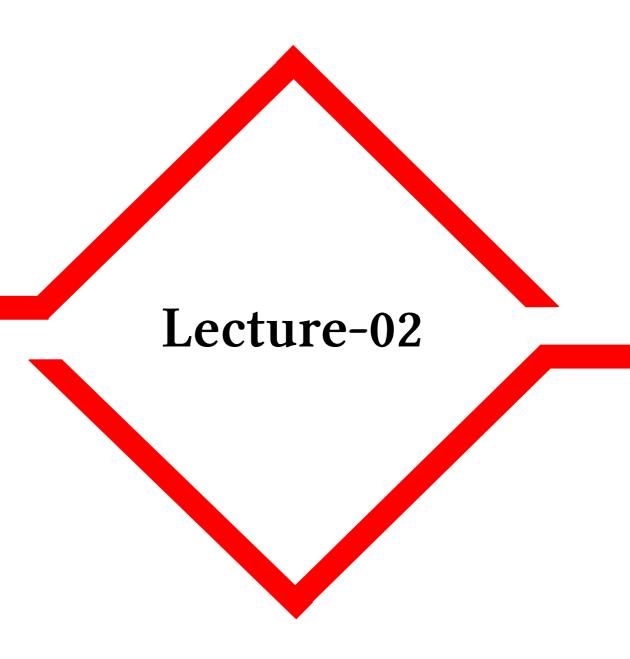
Computational Physics

M. Reza Mozaffari

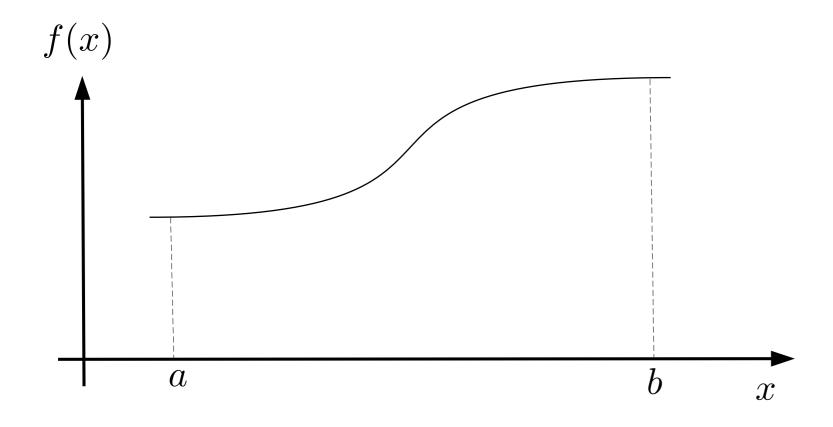
Physics Group, University of Qom



Contents

- Basis Concepts
- Numerical Differentiation

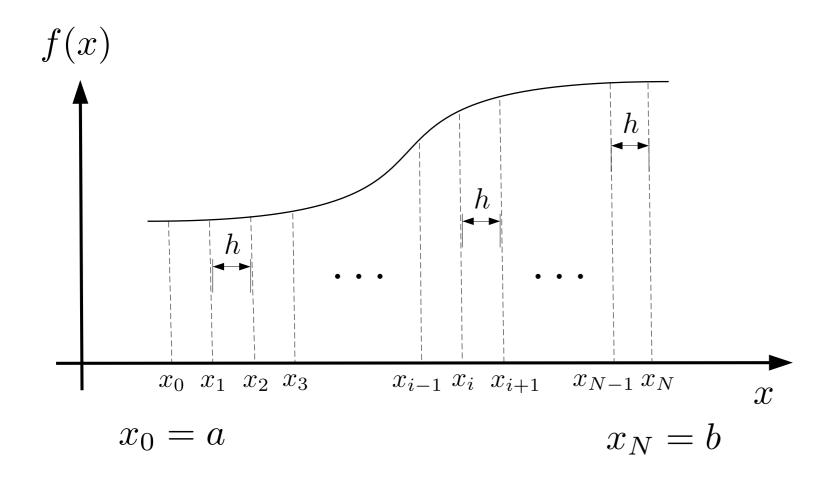
• Finite Differences



Smooth function f(x)

$$x \in [a, b]$$

• Finite Differences



Smooth function f(x)

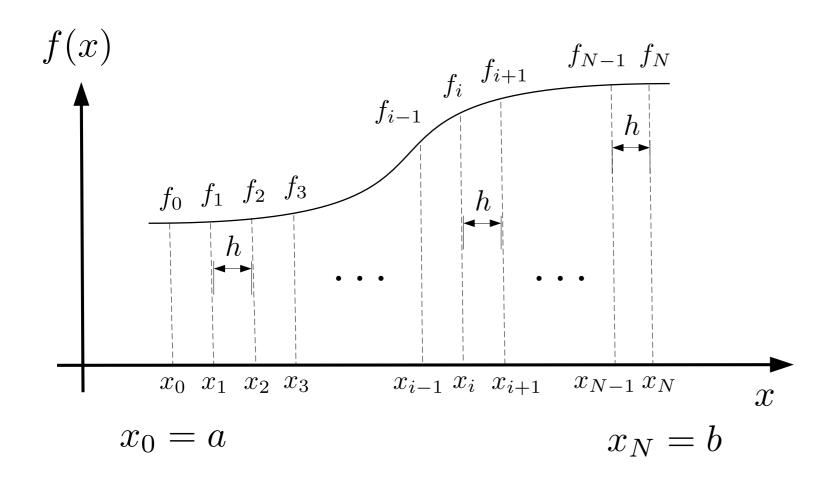
$$x \in [a, b]$$

$$h = \frac{b - a}{N}$$

$$\begin{cases} x_i = a + h i \\ i = 0, 1, 2, \dots, N \end{cases}$$

$$x_{i+1} = x_i + h$$

• Finite Differences



Smooth function f(x)

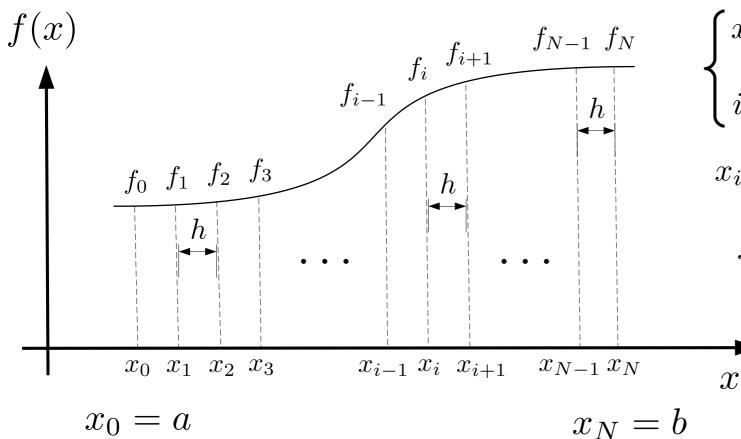
$$x \in [a, b]$$

$$h = \frac{b - a}{N}$$

$$\begin{cases} x_i = a + h i \\ i = 0, 1, 2, \dots, N \end{cases}$$

$$f_i = f(x_i)$$

• Finite Differences



b-a	x	f(x)
$h = \frac{b - a}{N}$	x_0	f_0
$\int x_1 - a + b i$	x_1	f_1
$\begin{cases} x_i = a + h i \end{cases}$	x_2	f_2
$\int i = 0, 1, 2, \cdots, N$	•	•
$x_{i+1} = x_i + h$	x_{i-1}	f_{i-1}
c	x_i	f_i
$f_i = f(x_i)$	x_{i+1}	f_{i+1}
	•	•
\overline{x}	x_{N-1}	f_{N-1}
	00	ſ

Taylor expansion

$$f(x_{i} + h) = f(x_{i}) + \frac{f^{(1)}(x_{i})}{1!}h + \frac{f^{(2)}(x_{i})}{2!}h^{2} + \frac{f^{(3)}(x_{i})}{3!}h^{3} + \cdots$$

$$\frac{x}{f(x)} \begin{vmatrix} x_{0} & x_{1} & x_{2} & \cdots & x_{i-1} & x_{i} & x_{i+1} & \cdots & x_{N-1} & x_{N} \\ \hline f(x) & f_{0} & f_{1} & f_{2} & \cdots & f_{i-1} & f_{i} & f_{i+1} & \cdots & f_{N-1} & f_{N} \\ \hline f^{(1)}(x) & f_{0}^{(1)} & f_{1}^{(1)} & f_{2}^{(1)} & \cdots & f_{i-1}^{(1)} & f_{i}^{(1)} & f_{i+1}^{(1)} & \cdots & f_{N-1}^{(1)} & f_{N}^{(1)} \\ \hline f^{(2)}(x) & f_{0}^{(2)} & f_{1}^{(2)} & f_{2}^{(2)} & \cdots & f_{i-1}^{(2)} & f_{i}^{(2)} & f_{i+1}^{(2)} & \cdots & f_{N-1}^{(2)} & f_{N}^{(2)} \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline$$

Taylor expansion

$$f(x_{i} + h) = f(x_{i}) + \frac{f^{(1)}(x_{i})}{1!}h + \frac{f^{(2)}(x_{i})}{2!}h^{2} + \frac{f^{(3)}(x_{i})}{3!}h^{3} + \cdots$$

$$\frac{x}{f(x)} \begin{vmatrix} x_{0} & x_{1} & x_{2} & \cdots & x_{i-1} \\ f(x) & f_{0} & f_{1} & f_{2} & \cdots & f_{i-1} \\ f^{(1)}(x) & f^{(1)}_{0} & f^{(1)}_{1} & f^{(1)}_{2} & \cdots & f^{(1)}_{i-1} & f^{(1)}_{i} & f^{(1)}_{i+1} & \cdots & f^{(1)}_{N-1} & f^{(1)}_{N} \\ f^{(2)}(x) & f^{(2)}_{0} & f^{(2)}_{1} & f^{(2)}_{2} & \cdots & f^{(2)}_{i-1} & f^{(2)}_{i} & f^{(2)}_{i+1} & \cdots & f^{(2)}_{N-1} & f^{(2)}_{N} \\ \vdots & \vdots & & \vdots & & \vdots \\ f_{i+1} = f_{i} + \frac{f^{(1)}_{i}}{1!}h + \frac{f^{(2)}_{i}}{2!}h^{2} + \frac{f^{(3)}_{i}(x_{i})}{2!}h^{3} + \cdots$$

Taylor expansion

$$f(x+h) = f_{i+1} = f_i + \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 + \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

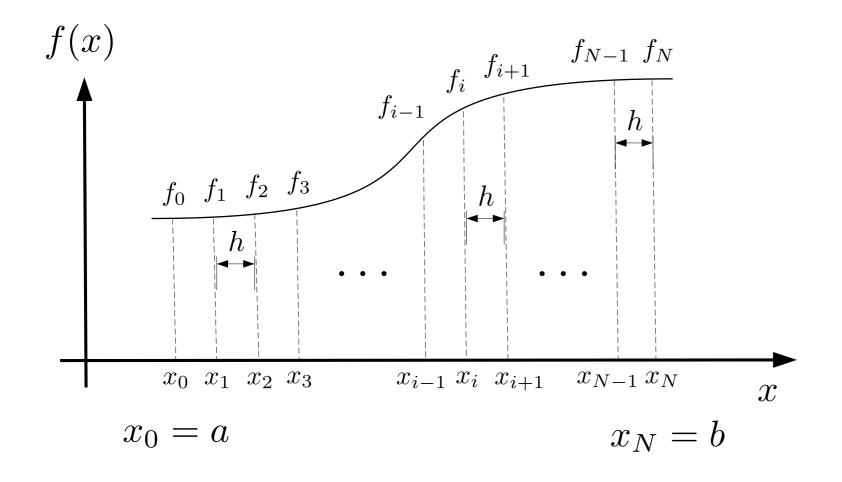
$$f(x-h) = f_{i-1} = f_i - \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 - \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

$$f(x+2h) = f_{i+2} = f_i + \frac{f_i^{(1)}}{1!}(2h) + \frac{f_i^{(2)}}{2!}(2h)^2 + \frac{f_i^{(3)}}{3!}(2h)^3 + \cdots$$

$$f(x-2h) = f_{i-2} = f_i - \frac{f_i^{(1)}}{1!}(2h) + \frac{f_i^{(2)}}{2!}(2h)^2 - \frac{f_i^{(3)}}{3!}(2h)^3 + \cdots$$

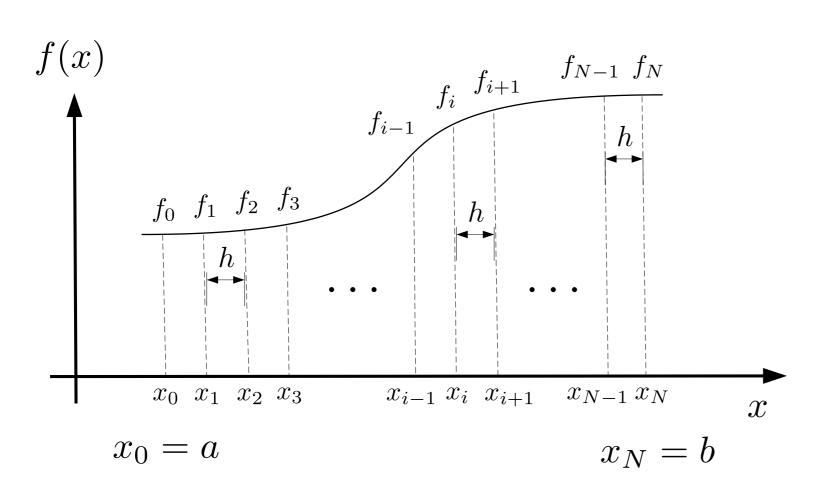
$$\vdots \qquad \vdots \qquad \vdots$$

• First order derivative



x	f(x)
x_0	f_0
x_1	f_1
x_2	f_2
•	•
x_{i-1}	f_{i-1}
x_i	f_i
x_{i+1}	f_{i+1}
•	•
x_{N-1}	f_{N-1}
x_N	f_N

• First order derivative



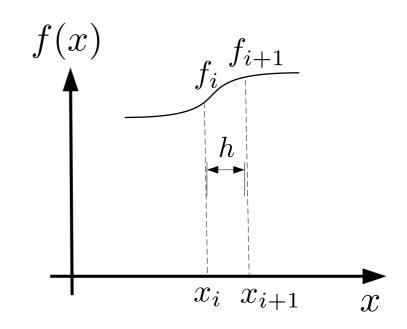
f(x)	$\int f^{(1)}(x)$
f_0	$f_0^{(1)}$
f_1	$f_1^{(1)}$
f_2	$f_2^{(1)}$
•	:
f_{i-1}	$f_{i-1}^{(1)}$
f_i	$f_i^{(1)}$
f_{i+1}	$f_{i+1}^{(1)}$
•	
f_{N-1}	$f_{N-1}^{(1)}$
f_N	$f_N^{(1)}$
	$egin{array}{c} f_0 \ f_1 \ f_2 \ dots \ f_{i-1} \ f_i \ f_{i+1} \ dots \ f_{N-1} \end{array}$

First order derivative

$$f_{i+1} = f_i + \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 + \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

Truncate: $f_{i+1} \approx f_i + f_i^{(1)} h + O(h^2)$

$$f_i^{(1)} \approx \frac{f_{i+1} - f_i}{h} + \mathcal{O}(h)$$



Forward difference derivative(two-point)

First order derivative

$$f_{i+1} = f_i + \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 + \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

Truncate: $f_{i+1} \approx f_i + f_i^{(1)} h + O(h^2)$

$$f_i^{(1)} \approx \frac{f_{i+1} - f_i}{h} + \mathcal{O}(h)$$

Forward difference derivative(two-point)

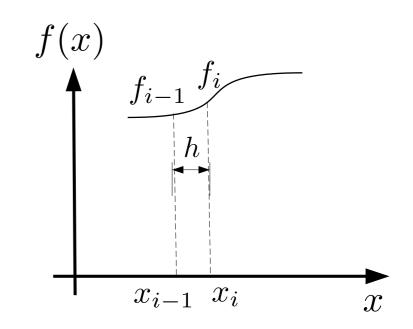
x	f(x)	$f^{(1)}(x)$
x_0	f_0	$f_0^{(1)}$
x_1	f_1	$\left f_1^{(1)}\right $
x_2	f_2	$\left f_2^{(1)} ight $
•	•	•
x_{i-1}	f_{i-1}	$\left f_{i-1}^{(1)} \right $
x_i	f_i	$\left f_i^{(1)} ight $
x_{i+1}	f_{i+1}	$\left f_{i+1}^{(1)} ight $
•	•	
x_{N-1}	f_{N-1}	$ \dot{f}_{N-1}^{(1)} $
x_N	f_N	$f_N^{(1)}$

First order derivative

$$f_{i-1} = f_i - \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 - \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

Truncate: $f_{i-1} \approx f_i - f_i^{(1)} h + O(h^2)$

$$f_i^{(1)} \approx \frac{f_i - f_{i-1}}{h} + \mathcal{O}(h)$$



Backward difference derivative(two-point)

First order derivative

$$f_{i-1} = f_i - \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 - \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

Truncate:

$$f_{i-1} \approx f_i - f_i^{(1)} h + O(h^2)$$

$$f_i^{(1)} \approx \frac{f_i - f_{i-1}}{h} + \mathcal{O}(h)$$

Backward difference derivative(two-point)

x	f(x)	$f^{(1)}(x)$
x_0	f_0	$f_0^{(1)}$
x_1	f_1	$\left f_1^{(1)}\right $
x_2	f_2	$\left f_2^{(1)}\right $
•	•	•
x_{i-1}	f_{i-1}	$\left f_{i-1}^{(1)}\right $
x_i	f_i	$\left f_i^{(1)} ight $
x_{i+1}	f_{i+1}	$\left f_{i+1}^{(1)} ight $
•	•	
x_{N-1}	f_{N-1}	$ f_{N-1}^{(1)} $
x_N	f_N	$\left \lfloor f_N^{(1)} \right floor$

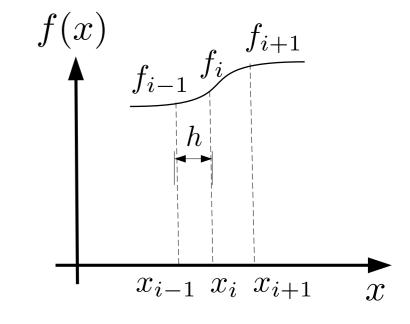
First order derivative

$$f_{i+1} = f_i + \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 + \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

$$f_{i-1} = f_i - \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 - \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

$$f_{i+1} - f_{i-1} = 2f_i^{(1)}h + 2\frac{f_i^{(3)}}{3!}h^3 + \cdots$$

Truncate: $f_{i+1} - f_{i-1} \approx 2f_i^{(1)}h + O(h^3)$



First order derivative

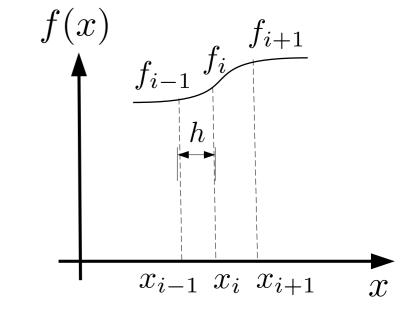
$$f_{i+1} = f_i + \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 + \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

$$f_{i-1} = f_i - \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 - \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

Truncate:

$$f_{i+1} - f_{i-1} \approx 2f_i^{(1)}h + O(h^3)$$

$$f_i^{(1)} \approx \frac{f_{i+1} - f_{i-1}}{2h} + \mathcal{O}(h^2)$$



Central difference derivative(three-point)

First order derivative

$$f_{i+1} = f_i + \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 + \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

$$f_{i-1} = f_i - \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 - \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

Truncate:

$$f_{i+1} - f_{i-1} \approx 2f_i^{(1)}h + O(h^3)$$

$$f_i^{(1)} \approx \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2)$$

Central difference derivative(three-point)

x = x	f(x)	$\int f^{(1)}(x)$
x_0	f_0	$f_0^{(1)}$
x_1	f_1	$\left f_1^{(1)}\right $
x_2	f_2	$f_2^{(1)}$
•	•	•
x_{i-1}	f_{i-1}	$\left f_{i-1}^{(1)} \right $
x_i	f_i	$\left f_i^{(1)} ight $
x_{i+1}	f_{i+1}	$\left f_{i+1}^{(1)} ight $
•	•	
x_{N-1}	f_{N-1}	$f_{N-1}^{(1)}$
x_N	f_N	$f_N^{(1)}$

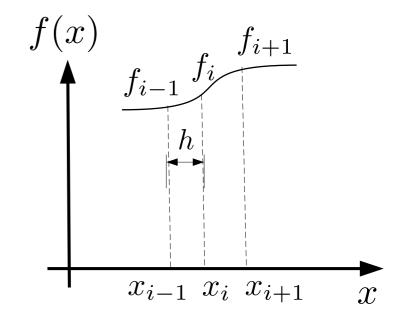
First order derivative

 $f_i^{(1)} \approx \frac{f_{i+1} - f_i}{h} + \underbrace{O(h)}_{\underline{\underline{\underline{}}}}$ Asymmetry

$$f_i^{(1)} \approx \frac{f_i - f_{i-1}}{h} + \underline{\underline{O}(h)}$$

Backward

$$f_i^{(1)} \approx \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2)$$



First order derivative

$$f_i^{(1)} \approx \frac{f_{i+1} - f_i}{h} + \mathcal{O}(h)$$

Forward

$$f_i^{(1)} \approx \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2)$$

$$f_i^{(1)} \approx \frac{f_i - f_{i-1}}{h} + \mathcal{O}(h)$$

Backward

x	f(x)	$\int f^{(1)}(x)$
x_0	f_0	$f_0^{(1)}$
x_1	f_1	$\left f_1^{(1)} \right $
x_2	f_2	$f_2^{(1)}$
•	•	•
x_{i-1}	f_{i-1}	$\left f_{i-1}^{(1)} \right $
x_i	f_i	$\left f_i^{(1)} \right $
x_{i+1}	f_{i+1}	$\left f_{i+1}^{(1)} ight $
•	•	
x_{N-1}	f_{N-1}	$\dot{f}_{N-1}^{(1)}$
x_N	f_N	$f_N^{(1)}$

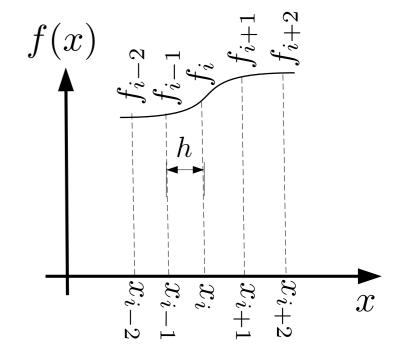
First order derivative

$$f_{i-2} = f_i - \frac{f_i^{(1)}}{1!}(2h) + \frac{f_i^{(2)}}{2!}(2h)^2 - \frac{f_i^{(3)}}{3!}(2h)^3 + \cdots$$

$$f_{i-1} = f_i - \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 - \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

$$f_{i+1} = f_i + \frac{f_i^{(1)}}{1!}h + \frac{f_i^{(2)}}{2!}h^2 + \frac{f_i^{(3)}}{3!}h^3 + \cdots$$

$$f_{i+2} = f_i + \frac{f_i^{(1)}}{1!}(2h) + \frac{f_i^{(2)}}{2!}(2h)^2 + \frac{f_i^{(3)}}{3!}(2h)^3 + \cdots$$

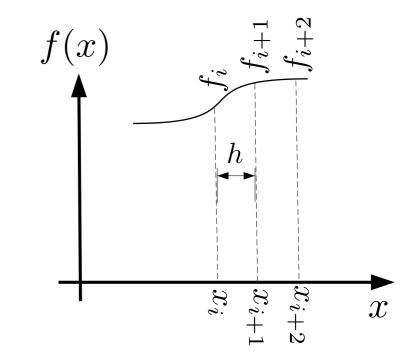


• First order derivative (3-points)

$$4f_{i+1} - f_{i+2} = 3f_i + 2f_i^{(1)}h - \frac{1}{3}f_i^{(3)}h^3 + \cdots$$

Truncate: $4f_{i+1} - f_{i+2} \approx 3f_i + 2f_i^{(1)}h + O(h^3)$

$$f_i^{(1)} \approx \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h} + O(h^2)$$

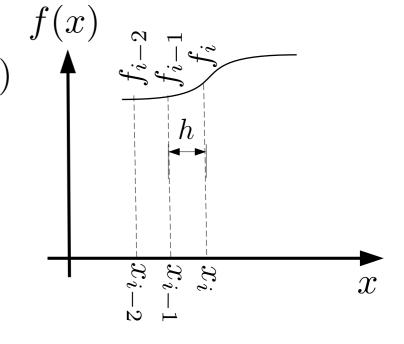


• First order derivative (3-points)

$$f_{i-2} - 4f_{i-1} = -3f_i + 2f_i^{(1)}h - \frac{1}{3}f_i^{(3)}h^3 + \cdots$$

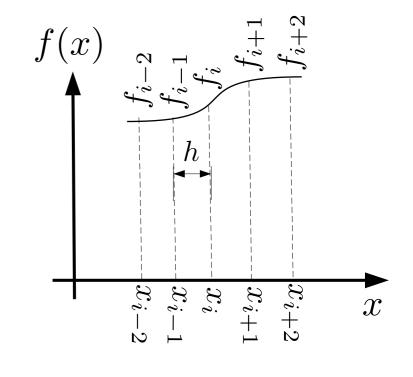
Truncate: $-4f_{i-1} + f_{i-2} \approx -3f_i + 2f_i^{(1)}h + O(h^3)$

$$f_i^{(1)} \approx \frac{f_{i-2} - 4f_{i-1} + 3f_i}{2h} + O(h^2)$$



First order derivative

$$\begin{cases} f_i^{(1)} \approx \frac{f_{i+1} - f_i}{h} + \underbrace{\mathrm{O}(h)} & \text{2-point} \\ f_i^{(1)} \approx \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h} + \underbrace{\mathrm{O}(h^2)} & \text{3-point} \\ \vdots & & & & & & & & & & & & & & & \\ f_i^{(1)} \approx \frac{f_i - f_{i-1}}{h} + \underbrace{\mathrm{O}(h)} & \text{2-point} & & & & & & & & & & & & & & \\ f_i^{(1)} \approx \frac{f_{i+2} - 4f_{i-1} + 3f_i}{2h} + \underbrace{\mathrm{O}(h^2)} & \text{3-point} & & & & & & & & & & & & & \\ & f_i^{(1)} \approx \frac{f_{i+2} - 4f_{i-1} + 3f_i}{2h} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & \\ \end{cases}$$

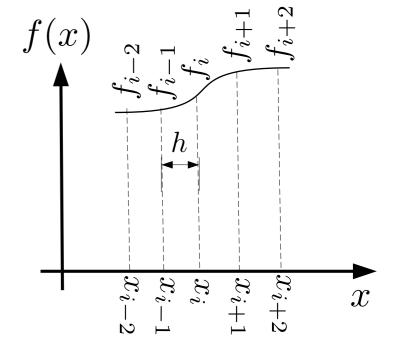


• First order derivative (5-points)

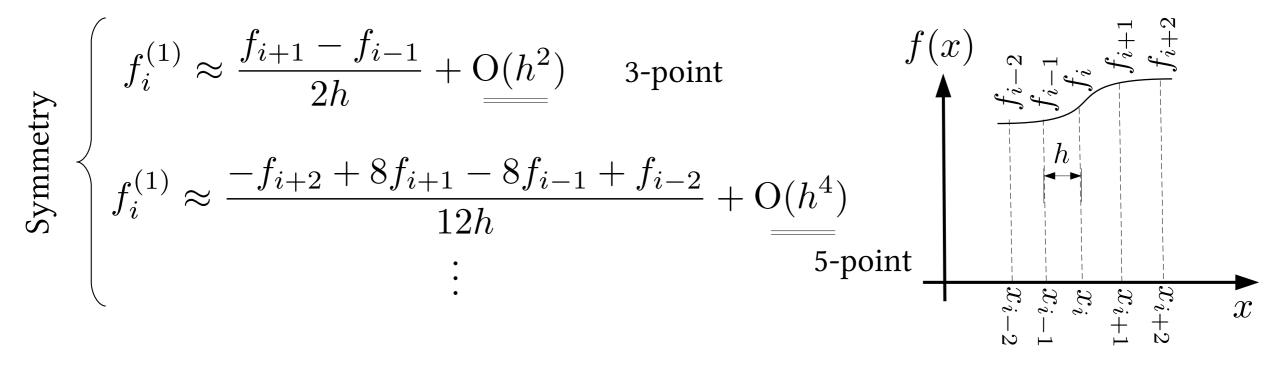
$$-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2} = 12f_i^{(1)}h - \frac{1}{30}f_i^{(5)}h^5 + \cdots$$

$$-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2} \approx 12f_i^{(1)}h + O(h^5)$$

$$f_i^{(1)} \approx \frac{-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2}}{12h} + O(h^4)$$



First order derivative



First order derivative

$$f_i^{(1)} \approx \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h} + O(h^2)$$

$$f_i^{(1)} \approx \frac{-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2}}{12h} + O(h^4)$$

$$f_i^{(1)} \approx \frac{f_{i-2} - 4f_{i-1} + 3f_i}{2h} + O(h^2)$$

x	f(x)	$\int f^{(1)}(x)$
x_0	f_0	$f_0^{(1)}$
x_1	f_1	$\left f_1^{(1)}\right $
x_2	f_2	$f_2^{(1)}$
•	•	•
x_{i-1}	f_{i-1}	$\left f_{i-1}^{(1)}\right $
x_i	f_i	$\left f_i^{(1)}\right $
x_{i+1}	f_{i+1}	$\left f_{i+1}^{(1)}\right $
•	•	•
x_{N-1}	f_{N-1}	$f_{N-1}^{(1)}$
x_N	f_N	$\left f_N^{(1)} ight $