Computational Physics

Lecture-21

M. Reza Mozaffari

Contents

- Basis Concepts
- Numerical Differentiation
- Numerical Integration
- Numerical Finding Root
- Classical Scattering
- Solving Linear Systems
- Transmission of Rectangular Barriers
- Approximation of a Function

Interpolation is needed when we want to infer some **local information** from a set of incomplete or discrete data.

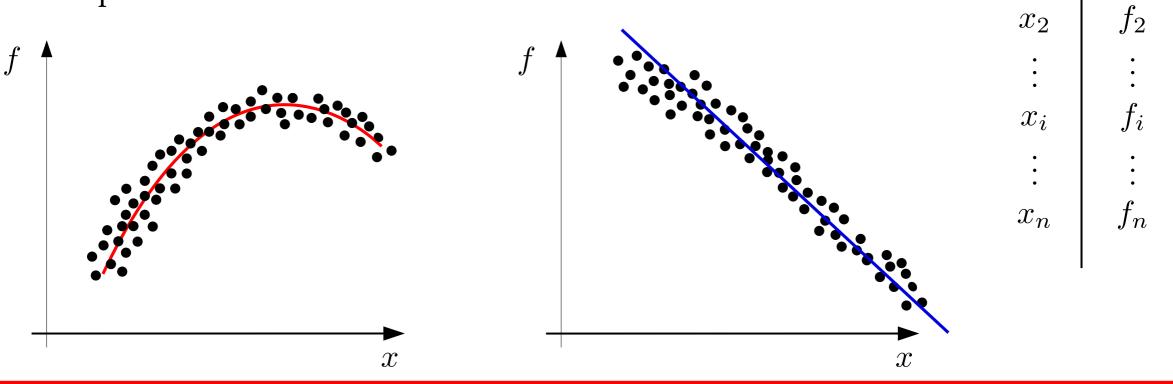
- Lagrange Interpolation
- Spline Approximation

Overall approximation or fitting is needed when we want to know the **general or global behavior** of the data.

• Least Square Approximation

• Least Square Approximation

In many situations in physics we need to know the **global behavior** of a set of data in order to understand the trend in a specific measurement or observation.



M. Reza Mozaffari

Physics Group, University of Qom

 f_0

 \mathcal{X}

 x_0

 x_1

• Least Square Approximation

P =	P(x)	$(D(m) f) \rightarrow 0$	$\mathcal{L}^2 = (P(x_0) - f_0)^2$
x	f	$(P(x_0) - f_0) \to 0$ $(P(x_1) - f_1) \to 0$	$ \begin{vmatrix} \mathbf{z} & -(I(x_0) & f_0) \\ & +(P(x_1) - f_1)^2 \end{vmatrix} $
x_0	f_0	$(P(x_2) - f_2) \to 0$	$+(P(x_2)-f_2)^2$
$egin{array}{c} x_1 \ x_2 \end{array}$	$egin{array}{c} f_1 \ f_2 \end{array}$		
:		$(P(x_i) - f_i) \to 0$	$+ (P(x_i) - f_i)^2$
x_i .	f_i .	• • •	· · · · · · · · · · · · · · · · · · ·
$\vdots x_n$	$\vdots \ f_n$	$(P(x_i) - f_i) \to 0$	$+ (P(x_n) - f_n)^2$
10	510		

M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

$P = P(x) \tag{P(m)} f \to 0$				
x	f	$(P(x_0) - f_0) \to 0$ $(P(x_1) - f_1) \to 0$		
x_0	f_0	$(P(x_2) - f_2) \to 0$		
x_1	\int_{f_1}	•		
x_2 .	f_2 .			
•	l f	$(P(x_i) - f_i) \to 0$		
x_i .	f_i .	•		
•	f i i i i i i i i i i i i i i i i i i i	$(P(x_i) - f_i) \to 0$		
x_n	f_n			

$$\mathcal{L}^{2} = \sum_{i=0}^{n} (P(x_{i}) - f_{i})^{2}$$

Choose the best function

$$P = P(x)$$

M. Reza Mozaffari

Physics Group, University of Qom

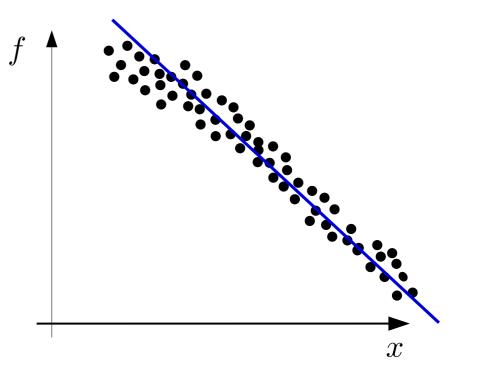
• Least Square Approximation

P = P(x)		

$$\mathcal{L}^{2} = \sum_{i=0}^{n} (P(x_{i}) - f_{i})^{2}$$

Choose the best function

P = P(x)



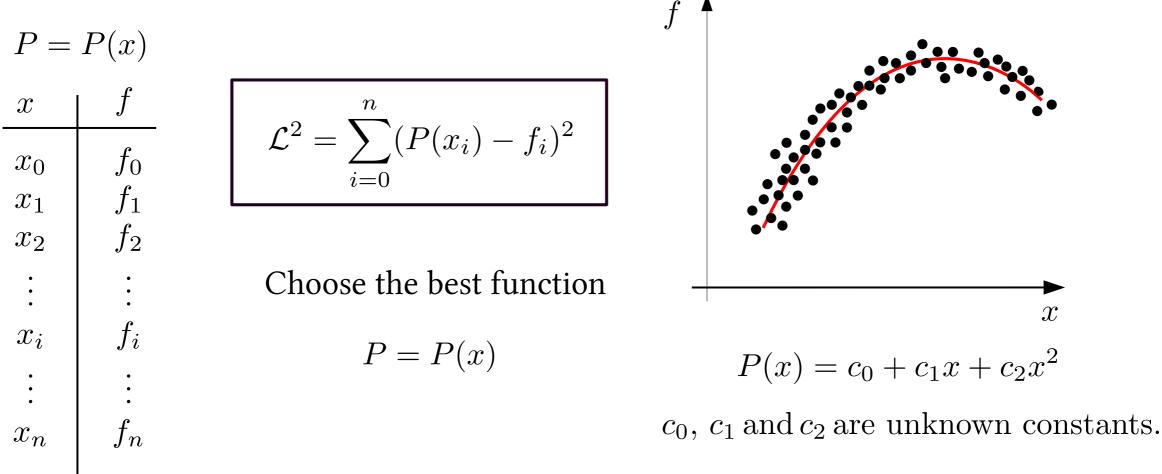
 $P(x) = c_0 + c_1 x$

 c_0 and c_1 are unknown constants.

M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

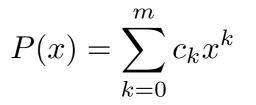


M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

P = P(x) $\int \int f_0 \\ f_1 \\ f_1$ ${\mathcal X}$ $\mathcal{L}^{2} = \sum_{i=0}^{n} (P(x_{i}) - f_{i})^{2}$ x_0 x_1 f_2 x_2 Choose the best function ٠ • f_i x_i P = P(x) $\begin{array}{c|c} \vdots \\ x_n \\ \end{array} \begin{array}{c} \vdots \\ f_n \end{array}$



$$P(x) = \sum_{k=0}^{m} c_k \sin kx$$

$$P(x) = \sum_{k=0}^{m} c_k J_k(x)$$
$$\vdots$$
$$P(x) = \sum_{k=0}^{m} c_k u_k(x)$$

 $\{c_i\}$'s are unknown constants.

M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

P = P(x)			
x	f		
x_0	f_0		
x_1	f_1		
x_2	f_2		
• •	• •		
x_i	f_i		
• •	• •		
x_n	f_n		

$$\mathcal{L}^{2} = \sum_{i=0}^{n} (P(x_{i}) - f_{i})^{2}$$

P = P(x)

$$\begin{cases} P(x) = \sum_{k=0}^{m} c_k u_k(x) \\ \mathcal{L}^2 = \sum_{i=0}^{n} (P(x_i) - f_i)^2 \end{cases}$$

$$\mathcal{L}^2 = \sum_{i=0}^n \left(\sum_{k=0}^m c_k u_k(x_i) - f_i \right)^2$$

Finding unknown constants.

M. Reza Mozaffari

Physics Group, University of Qom

M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

$$\mathcal{L}^{2} = \sum_{i=0}^{n} \left(\sum_{k=0}^{m} c_{k} u_{k}(x_{i}) - f_{i} \right)^{2} \qquad j: \quad \sum_{i=0}^{n} \left(\sum_{k=0}^{m} c_{k} u_{k}(x_{i}) \right) u_{j}(x_{i}) = \sum_{i=0}^{n} f_{i} u_{j}(x_{i})$$

Finding unknown constants.

$$\frac{\delta \mathcal{L}^2}{\delta c_j} = 0, \quad j = 0, 1, 2, \cdots, m$$

$$j: \sum_{k=0}^{m} c_k \left(\sum_{i=0}^{n} u_k(x_i) u_j(x_i) \right) = \sum_{i=0}^{n} f_i u_j(x_i)$$

$$j: \sum_{i=0}^{n} \left(\sum_{k=0}^{m} c_k u_k(x_i) - f_i \right) u_j(x_i) = 0$$

M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

$$\begin{array}{cccc} x & f \\ \hline x_0 & f_0 \\ x_1 & f_1 \\ x_2 & f_2 \\ \vdots & \vdots \\ x_i & f_i \\ \vdots & \vdots \\ x_n & f_n \end{array} \begin{array}{c} j: & \sum_{k=0}^m c_k \left(\sum_{i=0}^n u_k(x_i)u_j(x_i)\right) = \sum_{i=0}^n f_i u_j(x_i) \\ \text{Linear polynomial interpolation:} & u_0(x) = 1, \quad u_1(x) = x \\ u_1($$

M. Reza Mozaffari

• Least Square Approximation

$$\begin{array}{c|cccc} x & f \\ \hline x_0 & f_0 \\ x_1 & f_1 \\ x_2 & f_2 \\ \vdots & \vdots \\ x_i & f_i \\ \vdots & \vdots \\ x_n & f_n \end{array} \begin{array}{c} j: & \sum_{k=0}^m c_k \left(\sum_{i=0}^n u_k(x_i)u_j(x_i)\right) = \sum_{i=0}^n f_i u_j(x_i) \\ \text{Linear polynomial interpolation:} & u_0(x) = 1, & u_1(x) = x \\ \begin{cases} c_0 \left(\sum_{i=0}^n 1\right) + c_1 \left(\sum_{i=0}^n x_i\right) = \sum_{i=0}^n f_i \\ c_0 \left(\sum_{i=0}^n x_i\right) + c_1 \left(\sum_{i=0}^n x_i^2\right) = \sum_{i=0}^n f_i x_i \end{array}$$

M. Reza Mozaffari

• Loost Canona Annuarimation

n

m

M. Reza Mozaffari

Physics Group, University of Qom

Lecture-21

n

• Least Square Approximation
$$j: \sum_{k=0}^{m} c_k \left(\sum_{i=0}^{n} u_k(x_i)u_j(x_i)\right) = \sum_{i=0}^{n} f_i u_j(x_i)$$

 $\begin{array}{c|c} x & f \\ \hline x_0 & f_0 \\ x_1 & f_1 \\ x_2 & f_2 \\ \vdots & \vdots \\ x_i & f_i \\ \vdots & \vdots \\ x_n & f_n \end{array}$
Quadratic polynomial interpolation: $u_0(x) = 1, \quad u_1(x) = x, \quad u_2(x) = x^2$
 $\left\{\begin{array}{c} c_0 \left(\sum_{i=0}^{n} 1\right) + c_1 \left(\sum_{i=0}^{n} x_i\right) + c_2 \left(\sum_{i=0}^{n} x_i^2\right) = \sum_{i=0}^{n} f_i \\ c_0 \left(\sum_{i=0}^{n} x_i\right) + c_1 \left(\sum_{i=0}^{n} x_i^2\right) + c_2 \left(\sum_{i=0}^{n} x_i^3\right) = \sum_{i=0}^{n} f_i x_i \\ c_0 \left(\sum_{i=0}^{n} x_i^2\right) + c_1 \left(\sum_{i=0}^{n} x_i^3\right) + c_2 \left(\sum_{i=0}^{n} x_i^4\right) = \sum_{i=0}^{n} f_i x_i^2$

M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

x	f	σ	$= \sum_{i=1}^{n} \left(P(x_i) - f_i \right)^2 \qquad P(x_i) = \sum_{i=1}^{m} e_i \left(x_i \right)^2$
x_0	f_0	σ_0	$\mathcal{L}^2 = \sum_{i=0}^n \left(\frac{P(x_i) - f_i}{\sigma_i}\right)^2 \qquad P(x) = \sum_{k=0}^m c_k u_k(x)$
x_1	f_1	σ_1	
x_2	f_2	σ_2	$c^2 \sum_{k=1}^{n} \left(\sum_{i=1}^{m} u_k(x_i) - f_i \right)^2$
•	• •	•	$\mathcal{L}^2 = \sum_{i=0}^n \left(\sum_{k=0}^m c_k \frac{u_k(x_i)}{\sigma_i} - \frac{f_i}{\sigma_i} \right)^2$
x_i	f_i	σ_i	
• •	$\begin{array}{c} f_0\\ f_1\\ f_2\\ \vdots\\ f_i\\ \vdots\\ f_n\end{array}$	• • •	$\frac{u_k(x_i)}{\sigma_i} = \hat{u}_k(x_i), \frac{f_i}{\sigma_i} = \hat{f}_i$
x_n	f_n	σ_n	
			$\mathcal{L}^2 = \sum_{i=0}^n \left(\sum_{k=0}^m c_k \hat{u}_k(x_i) - \hat{f}_i \right)^2$

M. Reza Mozaffari

Physics Group, University of Qom

• Least Square Approximation

