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Abstract

The spin structure in a magnetic dot is studied as a function of the exchange coupling strength and dot size within the semiclassical

approximation on a discrete lattice. As the exchange coupling is decreased or the size is increased, the ground state undergoes a phase

change from a homogeneous single-domain ferromagnet (HSDF) to a spin vortex. The line separating these two phases has been

calculated numerically for small system sizes. The dipolar interaction has been fully included in our calculations. Magnon frequencies in

such a dot have also been calculated in both phases by the linearized equation of motion method. These results have also been

reproduced from the Fourier transform of the spin autocorrelation function. From the magnon density of states (DOS), it is possible to

identify the magnetic phase of the dot, as well as to compute their finite temperature magnetization or vorticity. Furthermore, the

magnon modes have been characterized for both the homogeneous ferromagnetic and the vortex phase, and the magnon instability

mechanism leading to the vortex-HSDF transition has also been identified.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Developments in the nanomagnet fabrication technology
have attracted much attention of the physicists in the past
decade [1]. Nanomagnets can be used as memory elements
[2], magnetic field sensors [3], computing and logic
operation devices [4]. It is thus important to understand
their static and dynamic behavior in both the homogeneous
single-domain ferromagnetic (HSDF) and vortex phases, in
small thin film samples. They are, furthermore, a good
example of a few-body system to test models and theories
used in micromagnetic calculations. Very recently, trilayers
of magnetic materials were made [5], in which, due to the
small size of the elements, the spin configuration takes the
vortex shape. The device was made as a candidate for
sensors and MRAM because of its important GMR
property. These so-called magnetic dots are made of
e front matter r 2007 Elsevier B.V. All rights reserved.
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permalloy materials (Fe–Ni) deposited on a nonmagnetic
semiconducting substrate such as Si. Their size ranges from
10 to a few hundred nm, and their thickness is about 20 nm.
For this reason, in this paper, they are treated as two-
dimensional (2D) systems. Due to dipolar interactions, a
vortex phase can form in large enough ferromagnetic dots
which are made of permalloy or supermalloy materials.
Vortices have also the potential of being used for memory
storage as the bit of information could either be the
chirality, or the outward magnetization created at the
center of the vortex. The latter, can also take two values
depending on whether its perpendicular component is
positive or negative. These two states being separated by a
finite energy barrier proportional to the disk size, will also
form a double well, which could display quantum proper-
ties if the barrier or the dot size is small enough. This has
potential applications for quantum computing.
For fixed exchange coupling, a phase diagram for the

stability of the vortex phase was computed by Cowburn
et al. [2] and compared to experiments as a function of dot
size and thickness. The results of this micromagnetic theory
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agrees relatively well with the experiments. Usov and
Peschany have used a variational ansatz for the vortex
arrangement of the spins in a disk-shaped dot, and studied
its ground state structure [6]. Also, Chui and Ryzhov [7]
have used Monte Carlo and analytical methods in order to
investigate the vortex state of a rectangular dot. The effect
of an in-plane field, which is to move the vortex core, was
studied analytically by Guslienko and Metlov [8]. Gus-
lienko et al. [9] have used a micromagnetic model as well as
a variational calculation [6] to compute reversal fields in a
dot where the ground state is a vortex. They have also
computed the hysteresis loop and have identified the modes
causing the instability of the vortex phase: the so called
C-shape and S-shaped modes.

Since instabilities are of dynamical origin, and also
because of the importance of identifying the excitations in a
magnetic system, it is very important to compute the
magnon frequencies and characterize their oscillation
modes in such dots. In this direction, the first steps were
taken by Wysin and Völkel [10] who considered an
anisotropic Heisenberg model and solved the linearized
equations of motion to obtain the magnon frequencies, and
then by Guslienko et al. [11] who used Thiele’s equation
[12] within the micromagnetic theory. The latter work has
studied the mode corresponding to the oscillations of the
vortex core with an eventual damping (Landau–Lifshitz–
Gilbert equation used within a micromagnetic solver),
while the former studied the instability of the in-plane
vortex modes as a function of the anisotropy exchange
parameter. Ivanov et al. [13] have computed analytically
the few lowest-magnon frequencies as a function of the dot
radius. Dipolar interactions were replaced by imposing the
boundary condition that the magnetization be tangent to
the dot circumference. In addition to the oscillations of the
center, they have identified the second mode as oscillations
of the core size. In another work, Guslienko et al.
considered magnons in a square-shaped dot [14]. All these
calculations were based on micromagnetic theory and
continuum modeling. Furthermore, only the lowest modes
were identified and calculated.

In this work, we have considered a discrete 2D magnetic
dot, modeling a thin film with large aspect ratio, including
explicitly the dipole interaction term. After identifying its
different phases, the phase diagram in the (exchange
coupling-dot size) plane is calculated. Since the system
characteristics depend on the dot size, thin films of
different sizes can be modeled with a fixed number of
sites, but with a renormalized exchange J, dipole coupling
c, and anisotropy K. So, in what follows, for the considered
sizes, the used value of the couplings will be very different
from their actual value. Section 2 introduces the model and
the renormalization scheme of the coupling constants.
Then the dynamics is treated by linearizing the equations of
motion in sections 2.3 and 3.2. Magnon frequencies are
also obtained from the Fourier transform of the spin
autocorrelation function. These results agree with each
other. Modes are characterized for both the vortex and the
ferromagnetic cases in Section 3.4. The lowest modes,
which are responsible for the instability near the transition
region have been identified, and compared to previous
results. The paper is ended with conclusions.
2. Methods

We consider a finite set of spins with exchange and
dipolar interactions in an eventual magnetic field. We
assume that there is no disorder present in the sample, the
only source of anisotropy is magnetostatic. Magnetocrys-
talline anisotropy is neglected in this work as the dipole-
induced shape anisotropy is enough to cause the spins to lie
in the plane and make a vortex (if the effective exchange is
small enough). For comparison with experimental samples,
one might need to include an anisotropy term in the
Hamiltonian. As the relaxation time due to nonlinear
magnon–magnon interactions or magnon–phonon cou-
pling is usually of the order of nanoseconds and thus larger
than typical magnon periods, the latter are well-defined
excitations. Thus the inclusion of the Gilbert damping will
only give them a finite lifetime and will not affect the
frequencies. For this reason, it is neglected in this work.
The Hamiltonian for this system can be written as

follows:

H ¼ �
1

2

X
hiaji

Jij
~Si:~Sj þ

X
i

ðgmB~Si:~Bext þ K sin2 yiÞ

þD
X
iaj

~Si:~Sj

R3
ij

�
3ð~Si: ~RijÞð~Sj : ~RijÞ

R5
ij

 !
, ð1Þ

where ~Bext is the applied magnetic field, K the anisotropy
constant with cos yi ¼ Sz

i =S, z being the easy axis, D the
strength of the dipole interaction (D ¼ ðm0=8pa3ÞðgmBÞ

2

would be its unrenormalized value), Jij the exchange
integral between neighboring spins i and j, and Rij their
distance in units of the lattice constant a. The exchange
coupling is short-ranged and strong. Usually in permalloy
systems the exchange integral is of the order of a few tenths
of an eV. The dipolar interaction, however, is much
weaker, by three orders of magnitude but is long-ranged.
Therefore it becomes important in larger samples, and
needs to be taken into account. It can furthermore account
for the (shape) anisotropy in the sample. Unlike many
calculations where the demagnetization field is included as
a boundary condition, we explicitly include the dipole
interaction in our calculations as indicated in the above
Hamiltonian.
In this paragraph, we discuss in qualitative terms the

physics and behavior of a vortex phase under magnetic
fields. For small samples the exchange term ðJ40Þ
dominates and the ground state is a single-domain ferro-
magnet. For large enough samples, or small enough
exchange coupling, the magnetostatic (dipolar) energy
term becomes dominant, and the ground state of a disk
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becomes a vortex, as it is mainly determined by the
minimum in the dipole energy. Exchange only serves to
keep neighboring spins aligned. In a vortex, no lines of field
leak outside the sample and thus the magnetostatic energy,
which usually has a large contribution in the total energy,
becomes minimum. Yet for even larger samples, where the
size exceeds the exchange length, formation of domains
takes place, and we are not discussing this limit in the
present paper. If the film thickness becomes comparable or
larger than the disk radius, then a ferromagnetic state
develops in the core of the cylinder. Indeed in the core
region, the vortex configuration is unfavorable compared
to an exchange energy driven ferromagnetic configuration,
and thus the spins tend to have a slight inclination along
the axis perpendicular to the disk. For thick enough disks,
the core region can develop a magnetization parallel to the
disk axis. The core radius is thus an increasing function of
the thickness [6]. In our calculations, however, we take a
single layer, and in this limit, it can be seen that in the
ground state, in the absence of anisotropy term and for
nearest neighbor exchange interactions, there is no
magnetization sticking out of the plane, even near the
vortex core. If the range of exchange is slightly increased,
or anisotropy is added, however, there will be an out-of-
plane component of the magnetization at the center of the
vortex.

An in-plane external field will shift the center of the
vortex away from the center, so as to make the regions of
magnetization parallel to the field larger. At larger fields,
the vortex core is repelled out of the sample area and the
system becomes fully ferromagnetic [15,6]. A hysteresis
curve can be obtained for the vorticity and the magnetiza-
tion as a function of the external in-plane field. A field
perpendicular to the plane of the disk either creates a
ferromagnetic core if the latter does not exist, or will widen
the core radius if it already exists.

In this work, we intend to compute the ground state and
the magnetic excitations of magnetic dots for both the
ferromagnetic and the vortex states of a monolayer

dot in the absence of an external field and anisotropy
[16]. The representation of spins is a discrete one, in
contrast to calculations which use a continuum des-
cription and thus cannot obtain high-frequency modes.
Analytical calculations, on the other hand, are based on a
variational solution, which must be put in by hand. The
present calculations, however, are numerically exact and
are only based on the linearization of the equations of
motion.

2.1. Ground state calculations

The magnons are the spin excitations above the ground
state. It is therefore necessary to find first the ground state
of this Hamiltonian. This can be achieved by minimizing,
within the mean-field approximation, the total energy with
respect to the spin configuration. As a result, one finds that
each spin is aligned along the molecular field at its site.
The latter is given by

gmB~Beff ðiÞ ¼
qH

q~Si

¼ �
X
jai

Jij
~Sj þ gmB~Bext,

� daz

2K

S
cos yi ẑþ 2D

X
jai

~Sj

R3
ij

�
3 ~Rijð~Sj : ~RijÞ

R5
ij

 !
, ð2Þ

where a denotes the Cartesian component of ~Si with
respect to which the derivative is taken. If a good starting
configuration is guessed, then one can simply iterate, with
an eventual mixing scheme, the Euler–Lagrange equations
which simply state that each spin must lie along the
effective (Weiss-) field. This is obtained from the mini-
mization of the total energy with the constraint of spin
normalization. In case no good starting guess is known,
one can start a Monte-Carlo simulation at a large enough
temperature and anneal the system to reach the ground
state. Typically, a spin is picked at random, rotated at
random, then the total energy change of the system is
computed and compared to kBT . The move is accepted if

e�DE=kBT4r where r is a random number in [0,1];
otherwise, the original configuration and total energy are
kept and another spin is chosen and rotated at random.
This is called the Metropolis algorithm [17], and converges
to the equilibrium ensemble at temperature T. Depending
on the size of the system, one needs to perform many scans
over the spins in order to reach equilibrium. Lowering the
temperature slowly enough guarantees that the true ground
state will be reached at the end of the simulation. Once the
temperature is low enough so that the system is near the
true energy minimum, one can switch to the steepest
descent (or conjugate gradients) algorithm in order to
reach the ground state faster.
2.2. Renormalization procedure

To compare an experimental sample with our finite
number of spin lattices, we need to go through a
renormalization of the Hamiltonian parameters. The
dipole and exchange coupling terms as well as the spin
magnitude and the lattice constant are known for an
experimental sample. The number of spins in an experi-
mental sample, however, is very large, of the order of 108

spins for a 200 nm diameter dot of 20 nm thickness. In our
numerical simulations, we will be dealing with a dot
containing of the order of few thousand spins. Each spin in
the simulations represents a block of spins in the real
material. If we call lB the length of the cubic block in units
of the lattice constant a, then the total spin of the block, in
which we assume all spins to be parallel, is SB ¼ l3BS. The
dipole and exchange coupling constants must also be
renormalized so that both systems have the same magnetic
and thermodynamic properties. After this renormalization,
the Hamiltonian must remain the same in magnitude and
form, except for an additional self-energy of each block due
to dipole and exchange interactions within that block, but
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being a constant, it does not affect energetics or dynamics
of the system. Written in terms of the magnetization
of each block labeled by I, (MI ¼ �gmBSI=ðalBÞ

3
¼

�gmBSi=a3), and excluding the self-energies, the renorma-
lized block-Hamiltonian becomes:

HB ¼ �
1

2

X
IaJ

JB
~MI : ~MJ þ

X
I

ð� ~MI :~Bext þ KB sin
2 yI Þ

þDB

X
IaJ

~MI : ~MJ

R3
IJ

�
3ð ~MI : ~RIJ Þð ~MJ : ~RIJ Þ

R5
IJ

 !
. ð3Þ

In the above, the capitalized subscripts I ; J refer to blocks,
whereas i; j referred to single spins, and the distance RIJ is
measured in units of alB. The renormalized couplings are
given by

JB ¼
a6

ðgmBÞ
2

Jl2B; BB ¼ a3Bl3B,

KB ¼ Kl3B; DB ¼
a6

ðgmBÞ
2

Dl3B.

This, of course, will yield the Hamiltonian in Eq. (1) if we
set lB ¼ 1. Thus we see that the dipole coupling constant,
the anisotropy, and the effective external field all scale as
l3B, whereas the exchange coupling scales as l2B. We must
add that in the above, the higher order terms in the

multipolar expansion of 1=r3ij , were neglected [18,19] so that

the form of the renormalized Hamiltonian remains the
same. Our units are chosen such that the dipole coupling is
constant D ¼ m0ðgmBÞ

2=8pa3. Since D=J scales as
DB=JB ¼ lBD=J, choosing a block of 103 spins (lB ¼ 10)
amounts to reducing J by a factor of 10. We fix the size of
each block by requiring the thickness of the film to be one
block, so that the sample is one layer of spins. As an
example, a typical sample of 20 nm thickness would imply
lB ¼ 57 as a � 3:5 Å. This implies a reduction in J by a
factor of 57, yielding effective exchange couplings of the
order of JB �

10
57
¼ 0:17meV [19].

2.3. Spin dynamics and magnon calculations

Lowest-frequency magnon modes have been calculated
in the continuum approximation [13] and also character-
ized experimentally [20]. Below, we will use the semiclassi-
cal approximation (assuming each spin to be a classical
dipole), and a discretized system of finite spins interacting
via exchange and dipole fields, in order to compute
magnon frequencies and characterize their modes.

Once the ground state spin configuration f~S
0

i g is
calculated from the mean-field equations, or the Monte
Carlo algorithm, one can proceed to calculate small spin

oscillations about this equilibrium: ~SiðtÞ ¼ ~S
0

i þ
~dSiðtÞ.

Assuming a harmonic dependence in time, and inserting
this into the semiclassical equations of motion

d~Si

dt
¼

gmB~Beff ðiÞ

_
� ~Si (4)
and eliminating the term ~S
0

i �
~B
0

eff ðiÞ ¼ 0, one obtains a
system of Ricatti non-linear equations on ~dSiðtÞ. Lineariz-

ing the latter with respect to ~dSiðtÞ, an eigenvalue equation
defining the magnon modes and frequencies will be
obtained. The effective field on site i involves, through
the exchange and magnetostatic interactions, the spin at
other sites. This makes the set of equations (4) a coupled
set, which is given below:

_~dSiðtÞ ¼
gmB~B

0

eff ðiÞ

_
� ~dSiðtÞ þ

X
ja

gmB
_

d~Beff ðiÞ

dSa
j

dSa
j ðtÞ �

~S
0

i .

(5)

Note that taking the dot product of the right side with ~S
0

i

yields zero, implying that the projection of the vector ~dSiðtÞ

on ~S
0

i does not change with time. Thus the magnetization

vector performs Larmor-like precessions around its ground

state (equilibrium) value. One can write ~dSiðtÞl ¼ ðal ui
!
þ

bl vi
!
Þeiolt for the magnon mode l and substitute it in

Eq. (5). The unit vectors ð ui
!; vi
!
Þ are orthogonal to ~S

0

i . This

results in an eigenvalue equation whose solutions ol are
the magnon frequencies. The type of oscillation about the
ground state for that mode is characterized by the

corresponding eigenvector defined by ðal ui
!
þ bl vi
!
Þ.

The results on magnon frequency distribution and modes
will be discussed in the next two sections.
3. Results

3.1. Energetics and phase diagram

In this section, we give the expressions for different terms
in the total energy, and discuss the phase stability. From
now on, the couplings we use are the renormalized ones.
Effectively, D is kept to its atomic value, and J is just
divided by lB so that reported values of JB ¼ J=lB are
fractions of meV, and do not correspond to a physical
exchange coupling. They just have an illustrative purpose.
Starting from a large value for the exchange integral J, and
a fixed lattice size, one can calculate the ground state and
lower J to investigate the phase change. Experimentally, J

can be changed by choosing different materials, or by
applying an external pressure. We will only consider a 2D
disk-shaped geometry. It is well-known that for high
enough J the ground state is ferromagnetic. As J is
decreased, the system goes through a phase change: the
ground state becomes a single vortex with its core localized
at the center of the dot [6,15]. As J is further decreased, we
have discovered that there are more phase changes, the
ground state may have a higher number of vortices actually
generated from higher magnon modes (to be discussed in
the section on magnons). For J ¼ 0 it was found that the
ground state can be seen as a ‘‘crystal’’ of smallest possible
vortices sitting near each other and forming a vortex
lattice. In what follows, we will be interested in dots with
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one vortex at the most, i.e. the exchange integral J does not
become too small, and we will only be interested in the
single-ferromagnetic-domain-vortex (SFD-V) transition. In
both phases, the exchange energy is mainly proportional to
NJS2. The difference between vortex and the single-domain
exchange energy comes from the sum of the core part
which is Ecore ¼ ecoreJS2, independent of N, and the long-
range logarithmic term characteristic of vortices, propor-

tional to LogN. The core energy in units of JS2 can be
deduced to be: ecore ¼ 2:29 from a fit to numerical data for
a square lattice and a disk-shaped dot. Therefore the
difference between the exchange energy of the vortex and

the HSDF phase is equal to: JS2 ðecore þ
p
2
LogNÞ.

On the other hand, the discretized dipole energy can be
approximated in the a! 0 limit (a is the lattice constant),

by the continuum formula Edipole ¼ �ðm0=2Þ
R

M:Hd2r

plus a self-energy correction due to diagonal i ¼ j terms.
The self-energy correction is thus extensive, and can be

written as Eself�energy ¼ ðaN þ b
ffiffiffiffiffi
N
p
Þm0ðgmBSÞ2=a3. The first

term, a, coming from the bulk contribution, and the
second, b, from boundary atoms.

In the fully ferromagnetic phase, where all spins have the
same exact direction, the magnetostatic energy is due to the
presence of magnetic charges at the border of the disk, and
leads only to an energy superlinear in dot radius (propor-
tional to

ffiffiffiffiffi
N
p

LogN) [13,21] is reduced to

E
dipole
HSDF ¼ B

ffiffiffiffiffi
N
p

LogN.

In the vortex phase, however, the continuum limit of this
energy reduces to zero as there are no magnetic charges: we
can write H ¼ rf and E

dipole
V /

H
fM:n dl �

R
fr:Md2r ¼

0 as the magnetization field in a vortex is divergenceless and
tangent to the dot boundary.

To summarize, the total energy (exchange plus dipole) of
the ideal HSDF and vortex dots, apart from self-energy correc-
tions which are the same in both phases, can be written as

EHSDF ’ �
1

2
JS2N z�

Affiffiffiffiffi
N
p

� �
þ B

ffiffiffiffiffi
N
p

LogN,

EV ’ �
1

2
JS2N z�

Affiffiffiffiffi
N
p

� �
þ JS2 ecore þ

p
2
LogN

� �
. ð6Þ

In the above, z is the number of nearest neighbors; the
second term �A=

ffiffiffiffiffi
N
p

is added in order to include
boundary atoms which experience a different environ-
ment). For a disk-shaped dot forming a square lattice,
z ¼ 4 and A ¼ 4:52368. Finally, the parameters which
appear in the energy functions of the two idealized phases
(Eq. (6)) are summarized in Table 1.
Table 1

Numerical values of the parameters (all in meV) in the fit and the energy

function

J Asquare ecore p B

10 4.524 2.29 0.0128 0.02
The previous analysis in Eq. (6) is valid for ideal vortices
and HSDF samples where the magnetization direction is
strictly circular and straight, respectively. For finite size
samples near the critical point, however, there will be some
deviation from the ideal orientation. Furthermore, the dipole
energy of the vortex will not be exactly equal to zero. For this
reason, the phase boundary was computed numerically.
We have performed relaxation calculation for finite size

dots. The total energy calculations were done for a square
and a circular-shaped dot of thickness one (a monolayer).
The critical exchange coupling parameter was obtained and
plotted as a function of the dot size (number of sites). In
the calculations, the spin magnitude S was taken to be 1;
the lattice constant was a ¼ 2 Å, and the lattice was of
square type. The two curves were fitted with JcðmeVÞ ¼

0:0144N0:4843 for the circle, and JcðmeVÞ ¼ 0:0167N0:4147

for the square. These graphs are displayed in Fig. 1. It
seems that for circular dots, the prediction of Eq. (6) the

line Jc ¼ p
ffiffiffiffiffi
N
p

with p ¼ 2B=pS2 ¼ 0:0128meV is a very
good fit and is also plotted on the graph.
From this study, it can be concluded that at or near the

critical point J /
ffiffiffiffiffi
N
p

. Although dipole and exchange fields
are of the same order, the dominant term in the total
energy near the critical point is the exchange term as it
behaves nearly like N3=2 whereas the dipole energy is linear
in N. Furthermore, as the two phases are separated by a
non-zero potential barrier for J ’ Jc, the transition is
similar to a ‘‘first-order’’ one [22].
3.2. Magnon frequency distribution

We have considered a 96 spin lattice in both vortex and
HSDF states. The obtained magnon frequencies for each
phase are displayed in Fig. 2 for J ¼ 0:6meV (HSDF) and
0:1meV (vortex), respectively. Keep in mind that the
reported values of exchange are really JB ¼ J=lB with
lB � 50. We can observe a gap in the vortex spectrum
whereas the spectrum of the HSDF phase starts from zero
1

2

0 500 1000 1500 2000 2500

C
ri

tic
a

Vortex

 Number of Spins

Fig. 1. Phase diagram of a square and circular dot as a function of size

and exchange coupling. The lines are the fitted curves given in the text.
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frequency. Note that the gap (in units of JS) in the vortex
phase will diminish as J is increased. The lowest-frequency
mode in the HSDF phase corresponds to in-plane collective
oscillations or uniform rotations of the spins, if the weak
in-plane anisotropy is neglected. The lowest-frequency
ðo � 0), which is the Goldstone mode, will shift to a small
non zero value due to the magnetostatic interaction term
which breaks spin rotational invariance, and causes this small
in-plane anisotropy. In our samples, this weak anisotropy
exists due to the discrete nature of the lattice and its shape,
and the lowest-frequency is very small but non-zero.

To check the correctness of the results, we have also
performed an independent calculation of the magnon
spectrum from the Fourier transform of the spin auto-
correlation function defined as

F ðtÞ ¼
1

NT

Z T

0

dt
XN

i¼1

ð~SiðtÞ � ~S
0

i Þ:ð
~Siðtþ tÞ � ~S

0

i Þ
�. (7)

Here, the ensemble average has been replaced by the time
average in which T is a time scale larger than the largest
magnon period so that all modes are sampled in this
-4
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Fig. 3. Magnon spectra of a 12 spin dot with J ¼ 1 eV (ferromagnetic)

autocorrelation function (right).
integral average. Writing the spin at site i and time t as a
general superposition of the eigenmodes,

~SiðtÞ ¼ ~S
0

i þ
X
l

ðal ui
!
þ bl vi
!
Þeiolt

substituting in Eq. (7), and using the orthogonality of the
eigenvectors, one can easily show that the Fourier trans-
form of F is of the form:

F ðoÞ ¼
X
l

dðo� olÞðjalj2 þ jblj
2Þ, (8)

which has peaks at precisely the magnon frequencies. The
spin autocorrelation function was calculated by performing
a spin dynamics simulation. The simulation was started
with an arbitrary initial configuration near the true ground
state. The spin trajectory at later times was then obtained
by integrating Eq. (4) by using the finite difference method.
Knowing the trajectories of all spins ~SiðtÞ for a long enough
time period, the calculation of the spin autocorrelation
function is just a matter of summation and Fourier
transformation. The spectra obtained by using this
method, which in principle includes the nonlinear devia-
tions as well, are illustrated in Fig. 3 and compared to the
harmonic results obtained by solving the linearized
eigenvalue equation. As can be seen, the agreement is
perfect provided the initial displacements are small enough.
Even some of the doubly degenerate states are resolved in
the nonlinear method. The height of the peaks obtained
from this method is given by the last term in parentheses in
Eq. (8) and is proportional to the amount of those modes
present in the original spin configuration.
The density of states (DOS) can also be deduced from

our data. We have plotted in Fig. 4 the DOS per spin in the
HSDF and the vortex phases of a circular sample for
different dot sizes. For the considered sizes, J ¼ 0:1meV
corresponds to a stable vortex and J ¼ 0:6meV to a stable
ferromagnetic phase. The DOS is defined as

DOSðoÞ ¼
X
l

dðo� olÞ,

where, for practical purposes, the Dirac function d was
replaced by a broadened Gaussian. It can be seen that the
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bulk limit is reached for N larger than a few thousand
spins. The flat behavior at the band edges is characteristic
of bulk 2D bands with quadratic dispersion. The DOS of
an array of vortices was also calculated by Shibata and
Otani [23]. Our results in terms of the general shape of the
DOS are similar, namely a shoulder feature at low
frequencies followed by a Van Hove peak in the middle
of the band.

One can notice that the shapes in both phases are similar
except for a relatively larger gap of the vortex phase.
Larger sizes have naturally less fluctuations and are more
smooth due to the small interlevel spacing. Even for the
same exchange coupling, frequencies of the vortex phase
are slightly above those of the HSDF (see also Fig. 7) The
overall shape of the DOS is characteristic of 2D systems
with a quadratic dispersion. The DOS for a square lattice
within the tight-binding model is also the same, namely it
consists in a central peak between two plateau-like regions.
The difference between the two phases resides in larger
fluctuations and broadening at the band edges and center
for the vortex phase. Due to broken rotational symmetry,
the vortex phase has a gap, whereas the HSDF phase has a
very low-frequency Goldstone mode, the frequency of
-0.4
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Fig. 4. (Color online) DOS per atom in the HSDF and vortex phases for

three different dot sizes. The data above the horizontal axis is obtained

with J ¼ 0:6meV (HSDF) and that below the axis with J ¼ 0:1meV

(vortex).

Fig. 5. (Color online) C-mode in the HS
which may go to zero for large enough J or small enough
sample size. The latter can also be shifted to a non-zero
value if additional anisotropy is present in the sample. This
is usually caused by the dipolar interaction term.
A similar magnon calculation for the vortex was also

performed by Ivanov [13] using the continuum version of
the spin Hamiltonian. He could extract the lowest modes as
a function of the dot radius and represented them in 2D
with two quantum numbers ðn;mÞ representing the number
of nodes of the radial Bessel function and the index of the
latter, respectively. However, only the lowest eigenmodes
were discussed in their paper. They were identified as
oscillations of the vortex position ðm ¼ 1; n ¼ 0Þ and
oscillations of the vortex core shape ðm ¼ 0; n ¼ 0Þ. In this
paper, all the modes are calculated and characterized. We
found that the vortex phase has yet another soft mode
causing some instability which may eventually lead to the
HSDF phase. This and other modes will be discussed
shortly.

3.3. Temperature dependence of the magnetization and

vorticity

From these spectra, it is also possible to obtain the low-
temperature dependence of the order parameter (magneti-
zation or vorticity, see also Eq. (10) for their definition) of
the dot:

hSðTÞi=S ¼ 1�
X
l

nBEðolÞ=Nl,

where nBE is the Boson distribution function and Nl is the
total number of modes. In large enough ferromagnetic
samples, one can assume DOSðEÞ ¼ YðEÞðD0 þ aðE=JSÞ2Þ

at low energies, and will obtain the following low-

temperature expansion:

hSðTÞi

S
¼ 1�D0kBT LogðEmin=kBTÞ � caðkBTÞ3 þ � � � ,

where the positive constant c is given by

c ¼

Z 1
0

x2nBEðxÞdx

and Emin is the low energy cutoff of the spectrum, due to
some kind of in-plane anisotropy, leading to a tiny gap in
DF phase. Oscillations are in-plane.
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Fig. 6. (Color online) S-mode in the HSDF phase. Oscillations are in-plane.

M.R. Mozaffari, K. Esfarjani / Physica B 399 (2007) 81–9388
the magnon spectrum. For the vortex, however, there are
two differences compared to the DOS of the homogeneous
ferromagnetic sample. One is the presence of a gap, and
two is the more smooth than a step function start of the
DOS. Assuming this start to be of the form DOSðEÞ ¼
EsYðE � EminÞ; 0oso1, one can analytically show that
this results in a flat vorticity versus temperature until
the latter reaches the gap value: hSðTÞi=S ¼ 1�
E1þs

mine
�Emin=kBT þ � � � . For larger temperatures, there is a

small linear decrease of the vorticity. We are not sure
whether an experimental measurement of the vorticity
versus temperature is possible, but we predict that in the
vortex phase the order parameter is constant as tempera-
ture is increased from 0 until kBT reaches the value of the
gap where it starts to decrease almost linearly. As for the
HSDF samples, where the magnetization can be measured,
we have predicted a superlinear decrease of the latter versus
the temperature. The 2D system being finite, and aniso-
tropy present, there is always a gap in the excitations and
magnetic order is robust against small thermal fluctuations.

In the following section, we will discuss the obtained
magnon modes.

3.4. Magnon modes characterization

The modes are the coherent libration of the spins on each
site. The oscillations take place with the period associated
with the frequency of that mode. One way to characterize
them is by defining the nodal lines (in 2D). The latter are
the set of points at which the amplitude of the spin
oscillations is zero (immobile spins). This is very similar to
the nodes in the eigenfunctions of an electron Hamiltonian.
The eigenfunctions are identified with their number of
nodes: in 1D, the eigenstate number n (if they are discrete)
has n� 1 nodes along the x-axis, excluding the node at
infinity. So wave functions with a higher number of nodes
in 1D, or number of nodal surfaces in higher dimensions,
have a higher energy. In the following, we will also use this
concept in order to classify the magnon modes.

3.4.1. Modes of the HSDF configuration

In the homogeneous ferromagnetic phase, they are well-
known plane-wave type modes with half-wavelengths
multiples of the dot size, but slightly deformed due to
boundary effects. Dipole-induced anisotropy favors in-
plane precessions, but higher frequency modes having out-
of-plane precessions also exist. The out-of-plane precession
can take place both at the center, or at the boundary of the
dot. The lowest magnon mode is the in-plane and in-phase
oscillations of the whole magnetization (Goldstone mode).
The frequency associated with it is zero [24] or very small.
The second lowest one is a C-shaped mode (see Fig. 5)
which consists in the bending of the magnetization with a
nodal line cutting the length of C into two. Half of its
wavelength is equal to the dot length and its wave vector is
along the magnetization direction. The next mode is the S-
shaped mode with a wavelength equal to the dot size. This
mode possesses two nodal lines dividing the length of S into
three. A yet higher energy mode has one nodal line
perpendicular to the magnetization, or two nodal lines one
along M and the other perpendicular to it, so that only
spins at the four corners of the dot oscillate. Higher modes
involve mostly motion of the outer spins, and have more
nodal lines in both directions and of wave vectors of larger
magnitude up to p=a. In the highest mode, all spins in the
central region precess in opposite phase to their neighbors,
and the spins at the boundary are immobile due to
confinement effects. For the next highest mode, this
large-amplitude opposite-phase oscillation takes place in
two halves of the sample (a high-energy p-wave state).
Instabilities which induce a phase crossover to vortex are

expected to be caused typically by excitations of the C-
mode. The S-mode can also induce a transition to a two
vortices state (see Fig. 6). When the exchange coupling is
lowered, the probability of being excited in the C-mode
state increases as this mode softens and becomes finally
unstable, i.e. of zero frequency. Near the crossover point,
this mode will induce the entrance of the vortex core into
the dot, without invoking an out-of-plane motion of the
spins. It can be thought as the projection of a virtual
supervortex with its core oscillating outside the dot, from
near the dot boundary to near infinity. The lowest-
frequency modes in both phases are plotted as a function
of J for a circular 96 spin dot in Fig. 7. To obtain them,
both the vortex and HSDF structures were put as initial
configurations, then relaxed to produce the ground state
configuration, before doing the diagonalization calcula-
tion. We can see that the softening of the two phases occurs
at two different exchange couplings, indicating that the
vortex-HSDF crossover is the analog of a ‘‘first-order’’
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transition, defined only for an infinite system [22]. We
believe it is caused by magnon instability. In a transition
where the two minima in the free energy are separated by a
barrier (see Fig. 8) proportional to the system size N, the
phase change can occur by tunneling at zero temperature
or by thermal activation at non-zero temperatures, even if J

is in the region where the C-mode frequency is still positive.
This transition across the barrier occurs after a finite time
as the system itself is finite in size. At lower J’s this
frequency becomes zero or negative. This is the region
where there is spontaneous phase change, and where the
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near the transition point in both phases for a 96-spin dot. The critical J

where the total energies of these phases become equal is also shown

(Jc ¼ 0:125meV). Magnon instability of each phase, however, occurs at a

further point (Jc3 ¼ 0:075meV: C-mode instability of HSDF,

Jc2 ¼ 0:26meV: vortex raising, and Jc1 ¼ 2:36meV: spontaneous cross-

over to HSDF). In principle, as the system size is finite, the crossover to

the raised vortex phase can take place after a finite time for any J between

Jc ð¼ 0:125Þ and Jc1 ð¼ 2:36meVÞ, see also Fig. 8.

Fig. 8. (Color online) Top: schematic of the free energy for different phases.

0.125meV for the second (symmetric) double well, and 2.36meV for the last

shown. Bottom: crossover (left to right) from HSDF to vortex phase. The so-

tunneling after a finite time for any J smaller than Jc ¼ 0:125meV.
second derivative of the energy at the HSDF spin
configuration has a sign change. Therefore the crossover
can take place in principle in a wide range of J’s with a rate
which increases as J tends to the magnon instability point.
Highest-frequency modes are also displayed for illustra-

tion in Figs. 9 and 10. As expected, these are short
wavelength modes in which neighboring spins oscillate out
of phase. Just like the bottom of the band, at the top of the
band, modes have, respectively, s-wave, and p-wave
symmetry, and due to confinement effects, boundary spins
are immobile.

3.4.2. Modes of the vortex configuration

Similar to the work of Ivanov [13], we have observed the
in-plane oscillations of the vortex center and shape as two
of the lowest-magnon modes. These two modes switch in
order as the exchange coupling J is increased away from its
critical value. Unlike their prediction, however, we have
seen that near the transition ðJ ! Jc2 ¼ 0:26meVÞ, yet
another phase appears and a different mode with the lowest
frequency causes instability. This mode describes in-phase,
out-of-plane oscillations of the core spins causing the
instability toward a vortex with an out-of-plane magneti-
zation localized at its core. We call this a raised vortex.
This mode has also been seen in the previous studies of
Wysin et al. [10,25], who considered a Heisenberg model
with a different exchange parameter for the component of
spins perpendicular to the plane, but without dipole
interactions. There also a square root dependence of the
frequency on the exchange parameter was observed near
the critical point. As the exchange coupling is increased, in
order to reduce the frustration of the four spins at the core,
the vortex core acquires a finite magnetization perpendi-
cular to the plane, and it also weakly oscillates (precesses)
about the center of the dot. The appearence of this
configuration is caused by the instability at Jc2 ¼ 0:26meV
J is increasing from left (vortex) to right (in-plane HSDF), and becomes

(single) well. The unstable out-of-plane saddle-point configuration is also

called C-mode causes the instability at Jc3 ¼ 0:075meV, but there can be
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Table 2

Vorticity and magnetization order parameters as a function of the

exchange coupling

J JoJc2 Jc2oJoJc1 J ¼ Jc1 Jc1oJ

Mz 0 0 !Mz ! 1 1 Mx ¼ 1;Mz ¼ 0

Vz 1 0 ! Vz ! 1 0 0

Fig. 9. (Color online) Highest-frequency HSDF mode. This state has a s-wave symmetry, but with neighboring spins oscillating out of phase. Blue spins

are toward the plane (negative z-component), green spins are in the plane and red spins away from the plane (positive z-component).

Fig. 10. (Color online) Second highest-frequency HSDF mode. This mode has a p-wave symmetry.

Fig. 11. (Color online) Softest mode in vortex phase near the critical point ðJ ¼ 0:25meVÞ. The plane of the disk has been tilted in order to show the out-

of-plane component of the core spins. One can identify an oscillation of the out-of-plane component of the core spins.
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for a 96 spin dot shown in Fig. 7. Clearly, this mode
disappears beyond the critical value of Jc2ð¼ 0:26meV in
our case). This softest mode is displayed in Fig. 11 where
the viewing direction has been slightly tilted in order to
better see out-of-plane spins. Calculations with a larger
number of layers or longer range of exchange, have
naturally a non-zero magnetization at the vortex core.
The order of the modes depends on the value of J. The
order we are reporting here, is obtained near the magnon
instability points, i.e. J ¼ 0:25meVoJc2 ¼ 0:26meV for
the vortex phase and J ¼ 0:08meV4Jc3 ¼ 0:075meV for
the HSDF phase. Note that the total energy of these phases
become equal at Jc ¼ 0:125meV.

During the crossover, there is a change in the order
parameters of the system. If we define the latter by

~V ¼
1

N

XN

i¼1

~Ri � ~Si

k~Rikk~Sik
, ð9Þ

~M ¼
1

N

XN

i¼1

~Si

k~Sik
, ð10Þ
then in the vortex phase we had ~V ¼ ð0; 0; 1Þ and ~M ¼ 0,
and in the raised vortex phase ~V ¼ ð0; 0; vÞ and ~M ¼
ð0; 0;mÞ where 0ovo1 and 0omo1 are two real numbers.
For the considered monolayer dot, this phase is higher in
energy than the HSDF phase (~V ¼ 0 and ~M ¼ ðmx;my; 0Þ)
and is only metastable (see Fig. 8). It could, however,
become more stable than the HSDF if the number of layers
is increased with the radius of the dot kept constant. These
results can be summarized in Table 2.
Thus, it seems that although this phase might be higher

in energy than the HSDF phase, the system goes from the
in-plane vortex, to this one which we call a raised vortex,
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Fig. 12. (Color online) In the saw-tooth mode, which has no nodal line, spins around a ring perform an in-phase oscillation in the plane of the dot.

Fig. 13. (Color online) Oscillations of the vortex core near the transition. During the oscillations, the spins remain mostly in the plane.

Fig. 14. (Color online) Oscillations of the core shape. During the oscillations, the spins remain in the plane.
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then by tunneling, or if J becomes large enough, directly, to
a homogeneous ferromagnetic phase. For this sample, we
observed that if J becomes as large as Jc1 ¼ 2:36meV, v

drops to zero and m is substantially increased ðmo1Þ,
meaning that the vortex core, which is ferromagnetic, is
enlarged till encompassing the whole dot. This intermediate
metastable phase becomes unstable at Jc1 and the
magnetization spontaneously lies in the plane for larger
exchange couplings.

The second mode is displayed in Fig. 12. We have called
it the sawtooth mode as all spins around a ring oscillate in
phase just as a sawtooth. This mode, we believe has not
been reported in the past. It has no nodal lines, confirming
its low frequency, and is the curled up version of the
Goldstone mode of the HSDF phase.

The next two lowest modes, which are well-known,
are the oscillations of the vortex core and of its shape. They
are displayed in Figs. 13 and 14. It was expected that the
oscillations of the core center would cause the instability to
the HSDF phase: as J is increased, this mode would soften,
making the amplitude of the core oscillations larger, until
the center is kicked out of the sample and one ends up with
a single homogeneous ferromagnetic domain. Our results
on the magnon instability, however, show otherwise: as J is
increased, first the core spins raise out of the plane and the
modes are more or less similar to those of the in-plane
vortex. So the ground state, as we previously described, has
0omo1 and 0ovo1 with m increasing and v decreasing as
J is increased. For instance, near J ’ 2meV, the magne-
tization is more localized at the center, and the lowest
mode consists in oscillations of the vortex core combined
with precession of spins about their ground state value (the
second mode being still the sawtooth). Although ultimately
the lowest mode has core oscillations, at the same time the
spins are lined up perpendicular to the plane of the sample,
and the transition to the homogeneous ferromagnetic state
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Fig. 15. (Color online) Highest-frequency vortex mode. Due to the presence of a core, the highest state has a p-wave symmetry. Blue spins are toward the

plane (negative z-component), green spins are in the plane and red spins, pointing away from the plane (positive z-component).

Fig. 16. (Color online) Second highest-frequency vortex mode. This mode has a d-wave symmetry.
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includes a thickening of the core region followed by the
switching of the magnetization to the in-plane direction
due to the dipole-induced anisotropy (see Fig. 8).

In higher frequency modes, large-amplitude in-plane
oscillations of the spins of central rings are observed; where
spins at the dot center and borders are less mobile. As
frequencies become yet higher, one can see shorter wave-
length (with 2 or mode nodal lines along the circumference)
Larmor-like precessions of the spins around the vortex rings.
Still other modes consist in out-of-plane oscillations of the
spins with wavelengths varying from two lattice spacing at
high frequencies, to the vortex circumference at lower
frequencies. Yet another class of modes have nodal lines in
the radial direction. In high-frequency modes, nodal lines are
both radial and circumferential. Figs. 15 and 16 are two
examples of highest-frequency modes.

In recent experiments on detecting magnon frequencies
[20], very few modes have been observed. In principle, there
are as many modes as there are spins in the system.
Presumably very specific modes are excited by the pulse in
the experiment. Furthermore, modes of frequency lower than
the relaxation rate associated with the Gilbert damping term,
are never observed since before any oscillation occurs they are
damped. However, modes such as vortex core oscillations
that we have identified here, have been observed.

4. Conclusions

To summarize, the energetics and dynamics of semi-
classical spins interacting via exchange and dipole fields
was considered in this work. Two phases were identified
and their total energy was formulated in the continuum
approximation. The crossover was investigated by compar-
ison of total energies and its mechanism described by
magnon instability. Magnon frequencies in each phase
were calculated and characterized for a finite size disk-
shaped dot. The in-plane vortex phase first goes through a
‘‘raised core’’ phase where the sample acquires an out-of-
plane magnetization in the core region of the vortex. Then
as J is further increased, the core thickens and the
magnetization finally switches to the in-plane direction to
give the HSDF phase.
Magnon modes of the HSDF phase, neglecting the

boundary effects, consist in spin precessions about the
equilibrium value where the motion is either in-plane or
out-of-plane or eventually mixed. The precessions of
neighboring spins are different by a phase which is p for
high-frequency modes and nearly zero (pa=L) for low-
frequency ones. Nodal lines are perpendicular to each other
and increase in number as the frequencies go up, although
this is not strictly true for small systems where boundary
effects are important. In the vortex phase, the nodal lines
are radial and also along the circumference. A low-
frequency mode which we called ‘‘saw tooth’’ was
identified, and not yet reported to the best of our
knowledge. The transition from vortex to the raised vortex
is due to the softening of a mode in which spins near the
core oscillate out of plane with alternating Mz; this was
identified by Jc2. As J is further increased from this value
to Jc1 the raised vortex core increases, and the magnetiza-
tion becomes homogeneously perpendicular to the disk,
and the system crossovers to the HSDF phase. The
crossover mechanism from HSDF to vortex consists in
the softening of the C-mode at Jc3.
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Finally, the finite temperature behavior of the vorticity
and magnetization was described in terms of magnon
density of states, and analytical formulas were predicted.
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