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Interaction of spherical colloidal particles in nematic media with degenerate
planar anchoring
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The interaction between two spherical colloidal particles with degenerate planar anchoring in a nematic

media is studied by numerically minimizing the bulk Landau–de Gennes and surface energy using

a finite element method. We find that the energy achieves its global minimum when the particles are in

close contact and forming an angle q ¼ 28� � 2 with respect to the bulk nematic director, in agreement

with the experiments. Although the quadrupolar structure of the director field is preserved in the

majority of configurations, we show that for smaller orientation angles and at smaller inter-particle

separations, the axial symmetry of the topological defect-pairs is continuously broken, resulting in the

emergence of an attractive interaction.
1 Introduction

Studying the behavior of colloidal particles in anisotropic fluids

with long-range orientational ordering, such as nematic liquid

crystals, has attracted great attention in soft condensed matter

physics.1–6 The orientation order parameter of the fluid (e.g.

director of nematic liquid crystal) is distorted from its uniform

orientation in the bulk due to anchoring on the surface of the

colloidal particles. These elastic distortions create topological

defects around the particles7 and induce anisotropic long and

short range interactions between the particles.8,9

Depending on the colloidal material and its coating, the

surrounding fluid may have a normal orientation (normal or

homeotropic anchoring), or parallel orientation (planar anchoring)

with respect to the colloidal surfaces. For strong normal

anchoring, the orientation of the fluid is locally and uniquely

determined on the colloidal surfaces. For planar anchoring, the

orientation of the fluid is degenerate on the colloidal surfaces and

is determined by the global structure of the fluid. Although the

director field on the surface of the particles is affected by the

environment for any finite anchoring strength of either type,

the extra local degeneracy of planar anchorings makes their

theoretical investigations more complicated.

In the case of a single colloidal particle, the particle-defect pair

induces a dipolar or a quadrupolar long-range elastic distortion

field10,11 depending on the anchoring type. The long-range

dipolar structure results from a satellite point defect, when the

size of the particle is large compared to the coherence length of

the nematic fluid and the anchoring is normal.7,9 The quad-

rupolar configuration appears in both normal and planar

anchorings. In the normal case, a disclination ring (Saturn ring)

encircles the particle, when the size of the particle is small or the

strength of anchoring is weak.7,8 In planar anchoring, the elastic
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distortions form two point defects (boojums) at the poles of the

particles, aligned along the nematic direction.7,8

The more physically interesting configurations are achieved

when there are many colloidal particles present in the medium.

For large separations of particles, the defects around of each of

the particles are independent of those of the other particles, and

(anisotropic) interaction potential between them is determined

by the long-range orientational field of the fluid. In this regime,

and in the case of two particles separated by a distance d, the

effective interaction potential between them is proportional to

d�3 or d�5 for dipolar or quadrupolar defect configurations,

respectively.1,3,7,8 When the particles approach each other, the

defect structures are distorted and the interactions deviate from

the far-field dipolar–dipolar or quadrupolar–quadrupolar inter-

actions.12–18

Experimentally, the colloidal interactions in nematic liquid

crystals are studied using optical4 or magneto-optical twee-

zers.19,20 The medium-induced interactions play an essential role

in the formation of chain4 or crystal2,21,22 suspensions of the

colloids (or droplets) in nematic liquid crystals.

Smalyukh et al.4 have measured the angular and the radial

components of the force between two particles with planar

anchoring in a nematic liquid crystal as a function of the inter-

particle separation d and the angle between the bulk nematic
Fig. 1 A schematic representation of the studied system. The nematic

director is fixed in the x direction at the boundaries and two particles are

symmetrically placed in x–y plane with respect to the center of the box.
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director with the vector connecting the particles, q (see Fig. 1).

They observe deviation from the far-field theoretical quadrupole-

quadrupole interaction8 when the objects are in the close-contact

regime. They also find that the equilibrium configuration

corresponds to a very small separation of particles, d x 2R, and

q x 30�.

In this paper, we study the fluid-induced interaction between

two spherical colloidal particles of radius R by numerically

minimizing the sum of elastic Landau–de Gennes free energy of

the bulk fluid23 and the degenerate planar anchoring surface

energy introduced by Fournier and Galatola24 In particular, we

are interested in the regime of strong anchoring and large

particles (R is large compared to the coherence length of the fluid,

x). Our main goal is to study the close-contact configurations for

which no theoretical work has been done to our knowledge,

though interesting physics is expected to emerge due to the strong

interaction of the topological defects. We also aim to explain the

experimentally observed angle of q x 30� at equilibrium.

The paper is organized as follows. The theoretical model is

explained in Section 2. We describe the details of our numerical

approach in Section 3. We finally present and discuss the results

in Section 4 and summarize our findings in Section 5.
2 The model

The geometry of the studied system is schematically illustrated in

Fig. 1. We consider two identical spherical colloidal particles

with radius R immersed in a 3D nematic cell. The nematic

director is aligned along the x-axis at the boundaries of the cell.

We scale all the lengths with respect to the radius of the particles.

The dimensions of the cell is Lx ¼ 15R, Ly ¼ 15R and Lz ¼ 6R.

The centers of the particles are confined to the plane z¼ Lz/2 and

are separated by a center-to-center distance d. The line joining

the center of the particles makes an angle q with x-axis. The

dimensions of the cell are chosen in a way to ensure that in all of

the studied configurations, the distance between the boundaries

and the particles is much larger than the coherence length and

also large enough so that the nematic director distribution is not

affected by the boundaries. The free energy of the system can be

written as:

F(d, q) ¼ Fb(d, q) + Fs(d, q) + Fc–c(d) (1)

where Fb(d, q) is bulk nematic fluid free energy, Fs(d, q) is the

surface energy and Fc–c(d) is the Van der Waals colloid-colloid

interaction. The free energy functionals will be described in detail

in the following sections.

In realistic situations, the only appreciable effect of Van der

Waals colloid–colloid interactions is to provide a short-range

repulsion between the colloidal particles. Such effects become

relevant only in the regime where the separation of the colloid

surfaces approaches the atomic length-scales. In this study, we

confine ourselves to the regime where the surface separations are

larger than the nematic coherence length, i.e. d � 2R [ x [ 1
�A. We note that the surface separations can chosen to be

appreciably smaller than the size of the particles in this regime.

Therefore, due to the separation of scales in this regime, we

ignore the Van der Waals interaction between the colloids in this

study.
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2.1 The nematic order parameter

The nematic fluid is described by a local, 3 � 3, traceless and

symmetric tensor order parameter, Qij¼ S(n̂in̂j� dij/3), which can

be specified by five independent components,

Q ¼

0
@Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33

1
A (2)

where Q33 ¼ �(Q11 + Q22). The scalar order parameter, S, and

the director orientation, n̂, are locally obtained by the largest

eigenvalue of the tensor order parameter, lmax ¼
2

3
S, and its

corresponding eigenvector, respectively. We note that working

with a tensor order parameter and expanding the free energy in

its terms allows the formation of biaxial order, which is a neces-

sary ingredient for a realistic description of topological defects

and their interactions.
2.2 The bulk free energy

The bulk free energy of the nematic fluid is described well by the

Landau–de Gennes model,23 in which the free energy functional

is expanded in powers of the tensor order parameter and its

spatial derivatives:

Fb ¼
ð

U

dV

�
A

2
QijQji �

B

3
QijQjkQki þ

C

4

�
QijQji

�2þL1

2
vkQijvkQij

þ L2

2
vjQijvkQik

�
(3)

where the indices refer to Cartesian coordinates, the summation

over repeated indices is assumed and U denotes the volume

occupied by the nematic liquid crystal. The first three terms are

the Landau–de Gennes free energy which describe the bulk

isotropic–nematic (IN) transition. The coefficients A, B, and C

are the material-dependent parameters.

The derivative terms are the contribution of the elastic free

energy in the nematic phase. The nematic elastic constants, L1

and L2, are related to the Frank elastic constants by L1 ¼ Ktwist/

2S2 and L2 ¼ (Ksplay � Ktwist)/2S2 ¼ (Kbend � Ktwist)/2S2. In this

study we restrict ourselves to one-elastic constant approximation

that means all the Frank elastic constants should be equivalent

which leads to L2 ¼ 0.

To simplify calculations, we rescale the tensor order parameter

as q ¼ ð4B=3
ffiffiffi
6
p

CÞ�1
Q, such that qij ¼ Ŝ(n̂in̂j � dij/3), where

Ŝ ¼ ð4B=3
ffiffiffi
6
p

CÞ�1
S. As a consequence, the dimensionless free

energy becomes

f̂ b ¼
Fb

f0R3
¼
ð

U

dV̂

 
s
2

qijqji �
ffiffiffi
6
p

4
qijqjkqki þ

1

4

�
qijqji

�2þ 1

2
x̂2 v̂kqij v̂kqij

!
(4)

where f0 ¼ Cð4B=3
ffiffiffi
6
p

CÞ4, s ¼ 27AC/8B2 is effective dimen-

sionless temperature, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27L1C=8B2

p
is the nematic coherence

length.25,26 In these dimensionless units, the fluid undergoes

a first-order isotropic–nematic transition at s¼ 1/8. The isotropic

phase becomes unstable for s < 0. The scalar nematic order
This journal is ª The Royal Society of Chemistry 2011



parameter in bulk is given by Ŝb ¼ ð3
ffiffiffi
6
p

=16Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 64s=9

p
Þ.

Throughout this paper, the quantities appearing with a hat are

rescaled with respect to the the radius of the particles, e.g. dV̂ ¼
R�3dV, x̂ ¼ R�1x and v̂k ¼ Rvk. Following the related previous

studies,15,25,26 the dimensionless temperature and length scales

were set to s ¼ ð3
ffiffiffi
6
p
� 8Þ=12 and x̂ ¼ 0.03 respectively. This

choice of parameters does closely match the parameters of the

widely used liquid crystal mesogen 5CB and results in formation

of stable topological defects.25,26
Fig. 2 A typical tetrahedral mesh used in the FEM analysis. The mesh is

finer near the colloidal surfaces to capture a more accurate representation

of the curved surfaces and to provide increased numerical accuracy near

the topological defects.
2.3 The surface free energy

As mentioned in the introduction, the normal anchoring can be

modeled with much more ease27,28 compared to the planar

degenerate anchoring due to uniqueness of the orientation of

nematic fluid at the colloidal surfaces.

Fournier and Galatola24 have recently introduced a two-

parameter surface energy functional that is bounded from below

and assumes its minimum in the manifold of degenerate planar

configurations. The surface energy consists of two terms,

controlling the planar anchoring and fixing the scalar order

parameter on the surface. Since we expect the formation surface

topological (e.g. two surface defects of charge +1/2 in case of

a single colloid), we relax the second constraint like previous

studies,20 resulting in the following single parameter surface

energy functional:

Fs ¼W

ð
vU

dA
�

~Qij � ~Q
t

ij

��
~Qji � ~Q

t

ji

�
(5)

where ~Qij ¼ Qij + Sdij/3, ~Qt
ij ¼ (dik � n̂in̂k) ~Qkl(dlj � n̂ln̂j) is the

projection of Q̂ij onto the tangent plane of the surface, and n̂ is

the normal to the surface. W is positive and controls the stiffness

of anchoring. The surface energy can be written in dimensionless

variables:

f̂ s ¼
Fs

f0R3
¼ w

R

ð
vU

dÂ
�

~qij � ~qt
ij

��
~qji � ~qt

ji

�
(6)

where w ¼ 27WC/8B2, ~qij ¼ ð4B=3
ffiffiffi
6
p

CÞ�1 ~Qij , ~qt
ij ¼ (dik �

n̂in̂k)~qkl(dlj � n̂ln̂j) and dÂ ¼ R�2dA. We chose ŵ ¼ 0.0156, which

describes strong planar anchoring to the surface once we take the

bulk free energy parameters into account.
Fig. 3 The free energy landscape of the system of two particles as

a function of the inter-particle distance, d/R, and q, the angle between the

line joining the center of particles and the far-field director.
3 Numerical minimization of the free energy

We adopt a finite element method (FEM) approach to minimize

the free energy functional described in the preceding sections.

The nematic cell was decomposed into tetrahedral elements by

using the automatic mesh generator Gmsh.29 In order to capture

a more accurate representation of the curved surfaces and to

provide increased numerical accuracy near the topological

defects which are expected to be formed on or in the vicinity of

the surfaces, a finer mesh size of LSMS ¼ 0.025R was used near

the spherical boundaries. We note that since the nematic coher-

ence length is x ¼ 0.03R, the physics of elastic deformations can

be properly captured in the used mesh. The mesh size was

increased to LLMS ¼ 0.25R away from the particles in order to

reduce the computational cost (see Fig. 2). The tensor order

parameter was linearly interpolated within each of elements in

the evaluation of the free energy integrals. We note that linear
This journal is ª The Royal Society of Chemistry 2011
interpolation is the simplest scheme that preserves the properties

of Q as an order tensor. For each configuration of the particles,

the total dimensionless free energy was minimized using

a conjugate gradient (CG) method,30 yielding the effective

potential energy (EPE) U(d, q). In order to accelerate the mini-

mization procedure for any given (q, d), we used the relaxed

director profile from the closest preceding configuration as the

initial guess. The configuration space of the particles was scanned

in the range 2.10R # d # 3.5R and 0� # q # 90� in steps of 0.05R

and 2� respectively. For larger separations, 3.5R < d # 6.0R, we

scan with larger q steps of 10�. For each configuration, the

minimization procedure was stopped when the relative free

energy improvements dropped below 10�5. We present and

discuss the results in the next section.
4 Results and discussion

Fig. 3 shows the full equilibrium free energy landscape of the

system. The smooth contour plot of the free energy landscape is

shown in Fig. 4 for better clarity. The normal to the contour lines

specify the direction of the net force between the colloidal

particles. The effective potential energy of the system of two

colloids is also shown in Fig. 5 as a function of the particles

separation d, for four different orientations. The figure shows

that for q ¼ 90�, the particles repel each other in the whole range
Soft Matter, 2011, 7, 1107–1113 | 1109



Fig. 4 The contour plot of the EPE between two particles as a function

of the inter-particle distance, d/R, and q, the angle between the line

joining the center of particles and the far-field director.

Fig. 6 Log-log plots of the effective potential energy vs. inter-particle

separation shows an orientation-dependent asymptotic power-law

behavior. Fitting a two-parameter function c0 + c1(d/R)c2 to U(d, q), we

get c2¼�5.7� 0.2,�5.0� 0.2,�2.5� 0.4 and�5.7� 0.2 for q¼ 0, 30�,

60� and 90� respectively.
of inter-particle separations, while they attract each other at q ¼
60� and q ¼ 30�, with a stronger attraction in the later case. This

uniform attractive or repulsive behavior is destroyed for

configurations with smaller angles. In particular, in the case of

q ¼ 0, the particles attract each other in the close-contact regime,

d ( 2.7R, while they repel each other for the larger separations.

We will show later that this peculiar behavior is associated to the

spontaneous broken axial symmetry of the defect pairs.

In order to analyze the distance dependence of the effective

potential, we have fitted a two-parameter function c0 + c1(d/R)c2

to the plots of Fig. 5. The fits are shown in Fig. 6 and correspond

to exponents c2 ¼ �5.6 � 0.2 and c2 ¼ �5.7 � 0.2 for q ¼ 0� and

q ¼ 90� respectively. It is noticed that exponents are slightly

larger in magnitude in comparison to the weak anchoring

analytical analysis,8 cweak
2 ¼ �5. The exponent is c2 ¼ �2.5 � 0.4

for q ¼ 60�, which describes a deformation field of longer range

in contrast to the weak anchoring theory. Finally, in the case q ¼
30�, the exponent is in agreement with the analytical prediction,

c2 ¼ �5.0 � 0.2.
Fig. 5 Effective potential energy between two particles as a function of

the inter-particle distance, d/R, for four different orientations q¼ 0�, 30�,

60� and 90�.
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Fig. 7 shows the effective potential energy as a function of

angle q for fixed particle–particle separations (d/R ¼ 2.10, 2.30,

2.50, 2.70, 2.90, 3.10, 3.30 and 3.50). It is noticed that each of the

plots has a unique global minimum. Moreover, the free energy

minimum, as well the orientation angle at which the minimum is

achieved (qmin), decreases monotonously as the particles

approach each other. This behavior is shown clearly in the inset

plot of Fig. 7. Extrapolating qmin to the limit d x 2R, we find

that the global minimum of the free energy is achieved for

q ¼ 28� � 2�. This result is consistent with the experimental

results of Poulin and Weitz,7 Smalyukh et al.4 and Kotar et al.19

who find the equilibrium angle to be q x 30�.

The vector field of the net force between the particles can be

calculated by taking the gradient of the effective potential energy.
Fig. 7 Effective potential energy as a function of angle q for different

inter-particle separations d/R ¼ 2.10, 2.30, 2.50, 2.70, 2.90, 3.10, 3.30 and

3.50. The inset plot shows the angle at which the free energy achieves its

minimum, qmin, as a function of inter-particle separation. The free energy

assumes its global minimum at qmin ¼ 28� � 2�.

This journal is ª The Royal Society of Chemistry 2011



Fig. 8 The vector field of net force between two colloidal particles in the

x�y plane. The center of one of the particles is fixed at the origin. Fr and

Fq denote the radial and tangential components of the force, respectively.

Fig. 9 Director profile and topological defects on the surface of the

colloidal particles when they approach each other along the nematic

direction (q ¼ 0) at different inter-particle separations (a) d/R ¼ 3.00, (b)

d/R ¼ 2.70, and (c) d/R ¼ 2.10. The regions where the scalar order

parameter drops below 0.6Sb are highlighted, signaling the existence of

a topological defect. The defect points on the surface and bulk are indi-

cated by dark colors, respectively.

Fig. 10 Director profiles on the surface of the colloids for q ¼ 0 and d ¼
2.10R, viewed along the x-axis. (a) Front view (near boojums) (b) back

(far boojums). The displacement of approaching boojums from the x-axis

is clearly noticeable.
The net force field is shown in Fig. 8 and the configurations at

which the radial (Fr) and tangential (Fq) components of the net

force vanishes are indicated. It is easily noticed that the force field

drives the system towards the configuration of minimum free

energy, i.e. qmin x 28� and d x 2R. The radial component of the

net force is positive for q T 60� and thus, the force is repulsive.

The angle at which the radial component of net force changes

sign depends on the inter-particle separation and varies in the

range 60� < q < 70� for the investigated configurations. Repulsive

interaction is expected to show up when q > 75� in quadrupolar

approximation.4 We associate this slight discrepancy to devia-

tions from the quadrupolar approximation.

As it was mentioned earlier in this section, the inter-particle

force exhibits a non-monotonous behavior as a function of inter-

particle separation for small angles (q ( 15�). This behavior can

be seen in Fig. 5, 4 and 8. In particular, for q¼ 0�, the net force is

repulsive for large separations, while it becomes attractive for

�d/R ( 2.7. To our knowledge, this peculiar behavior has not

been studied theoretically elsewhere.

Moreover, its experimental observation requires measurement

of the interaction force in separations smaller than those repor-

ted in the experimental paper by Smalyukh et al.4,31 We note that

precise experimental measurement of this phenomenon can be

carried out by fixing the orientation of the colloidal particles by

using line optical tweezers.32

In order to gain insight into this phenomenon, we study the

configuration of the topological defects at different inter-particle

separations, as shown in Fig. 9. When the particles are well

separated (d/R T 3), the boojum defects are aligned on the x-axis

and the defect-particle pairs have a quadrupolar symmetry for

each of the colloidal particles. The repulsion in this regime is thus

associated to the head-to-head interaction of defects of equal

charge +1/2 (Fig. 9a). When particles approach each other, the

continuous O(2) symmetry of the defect pairs is continuously

broken due to the strong repulsion between the approaching

boojums, driving them away from the axis of symmetry

(Fig. 9b–c). The nematic director profile on the front and back of

the colloidal particles is shown in Fig. 10a and 10b respectively,

as seen along the x-axis. It is noticed that the approaching pair of
This journal is ª The Royal Society of Chemistry 2011 Soft Matter, 2011, 7, 1107–1113 | 1111



Fig. 12 Defect displacement as a function of inter-particle distances for
� � � �
boojums are driven away from the x-axis (Fig. 10a), while the

boojums on the back of the particles remain on the x-axis. The

displacement of the approaching pair of boojums induces an

attraction between the colloidal particles due to the energetic

tendency to reduce the volume of the distorted region between

the particles.

At larger angles (q T 30�), the axial symmetry of the defect-

pair on each of the particles is almost preserved in the whole

range of inter-particle separations (see Fig. 11 and Fig. 12).

Therefore, the monotonous attractive or repulsive interaction at

larger angles can be explained by merely taking into account the

quadrupolar deformation field of each of the particles.8

We finally remark that although the calculations were carried

out for a specific choice of bulk and surface energy parameters,

we expect our results to be insensitive to variations in the

parameters as long as they describe the same (R [ x, and strong

anchoring).
Fig. 11 Director profiles on the surface of the colloids for a center

separation of d/R ¼ 2.10, and for four different orientations (a) q ¼ 20�,

(b) q ¼ 30�, (c) q ¼ 40� and (d) q ¼ 50�. The spheres are viewed along the

bulk nematic director and from the side where the boojums are closer to

each other. The center of each of the spheres is indicated by a dot. It is

noticed that the axial symmetry of the defect-pair on each of the spheres is

essentially preserved.

q¼ 0 , 30 , 60 and 90 . Displacements are scaled to the particle radius. It

shows that defects do not move a lot for large angles. The curves are

guides for the eye.
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5 Conclusions

In this paper, we studied the interaction of two spherical colloidal

particles with degenerate planar anchoring in a nematic media by

numerically minimizing the Landau–de Gennes23 bulk and

Fournier and Galatola24 surface energy using a finite element

method. Our choice of parameters belong to the regime of large

particles (in comparison to the nematic coherence length) and

strong surface anchoring. We obtained the nematic-induced

effective potential energy of the system for different inter-particle

separations and orientations with respect to the bulk nematic

director.

By studying the free energy landscape of the system, we found

that the system assumes its unique global minimum of energy

when the particles are in close contact and are oriented at an

angle q ¼ 28� � 2 with respect to the bulk nematic director. Our

results are in a very close agreement with the experimental results

in ref. 4, q x 30�. To the best of our knowledge, we have

provided the first clear theoretical explanation of these experi-

mental findings.

Our results suggest that for large inter-particle separations, the

quadrupolar structure of the defect-pair on each of the particles

is essentially preserved, resulting in a monotonous attractive or

repulsive inter-particle net force, depending on the orientation

angle. However, for smaller orientation angles (q ( 15�) and at

smaller inter-particle separations, the axial symmetry of the

defect-pairs is continuously broken, resulting in the emergence of

an attractive interaction due to the tendency of the system to

reduce the volume of distorted fluid. This very unexpected

attraction, in very short distances, has not been reported before

and may be of interest to be explored experimentally too.

The finite element method, used in this study, can be extended

to more complicated geometries. Inter-particle interaction for

nonspherical colloids with planar anchoring33 and also many-

body interactions between the colloids in colloidal aggrega-

tions34,35 are in the direction of our future studies.
This journal is ª The Royal Society of Chemistry 2011
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