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Conically degenerate anchoring effect in planar nematic-liquid-crystal shells
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We study the defect texture in symmetric and asymmetric states of a nematic-liquid-crystal shell with conic
and planar degenerate surface anchorings on the inner and outer spherical boundaries, respectively. To achieve
the equilibrium nematic orientation, we numerically minimize the Landau–de Gennes free energy by employing
surface potentials on the shell walls. The symmetric nematic shells energetically have stable configurations
independent of thickness. In thick shells, the director field satisfies bipolar and hexadecapolar configurations
between boundaries. In thin shells, the boojums transform into two stable disclination curves.
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I. INTRODUCTION

Developments in microfluidic devices to fabricate spherical
shells of nematic liquid crystal (NLC) have raised hopes for
using polymer linkers in photonic applications [1,2], although
controlling the binding sites on the vertices of defects is
chemically heavy duty [3]. The nematic defect structures and
their stability in such colloids are the critical contents in this
context [4–13].

Nematic molecule behavior on the shell surfaces distorts
the local order in the confined nematic layer and regions
appear as points and/or lines with zero nematic ordering
which depend on the thickness, asymmetry degree, and inner
and outer surface coatings [14–20]. The average orientation
of elongated nematic molecules locally specifies a preferred
direction that is called the director. The director is a unit
vector with headless symmetry (n̂ ≡ −n̂). Defects are topo-
logically related to regions where the director distorts due to
the surface coating that is well known as anchoring or external
fields [21]. The surface anchoring depends on the orientation
of the nematic mesogens on the boundaries and their strength,
with preferred (normal) or degenerate (planar and conical)
configurations [4,22–27].

In strong normal anchoring on the spherical surface, the
elastic quadrupole symmetry induces a Saturn ring with
strength s = −1/2 that encircles the colloid at the equator.
In weak normal anchoring, the dipole symmetry deviation
leads to a hyperbolic hedgehog point defect (s = −1) that
appears near the particle inside the bulk [4,28]. The nematic
droplets show the same singularities with different winding
signs [26,29].

Degenerate planar anchoring on the spherical surface leads
to bipolar symmetry with a pair of boojums (s = +1) at the
poles of the particle in bulk [22]. The bipolar defect tex-
ture is also observed in the nematic droplets [30,31]. The
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Poincaré-Hopf theorem indicates that the total topological
charge on a spherical nematic shell with tangential boundary
condition is equal to +2 [32,33]. Depending on the shell thick-
ness, the elastic distortions show two defect arrangements.
The bipolar texture appears in thick shells with two paired
boojums, and the tetrahedron configuration has emerged in
thin shells with four disclination lines (s = +1/2) [5,6,17,34].
The defect textures of the nematic shells also depend on the
external fields [20,35].

Conically degenerate anchoring on the spherical surface
simultaneously induces a loop defect and a boojum pair
similar to particles with perpendicular and planar anchor-
ings. For a nematic droplet, the winding number of the
loop defect is equal to +1/2 [25,36], while it is −1/2
for an immersed colloid in a nematic bulk [23,27,37]. This
study numerically investigates symmetry and asymmetry of
nematic-liquid-crystal shells with degenerate conic and planar
surface anchorings on their inner and outer spherical bound-
aries, respectively.

II. NUMERICAL METHOD

We have used a second rank, traceless, and symmetric
tensor, Qi j , to describe the confined nematic layer. The largest
eigenvalue and its corresponding eigenvector of the nematic
tensor are related to the scalar order parameter and director
orientations. The equilibrium nematic order and orientation
are obtained by minimizing the Landau–de Gennes free en-
ergy and surface planar and conical energies in terms of
nematic tensor.

The Landau–de Gennes free energy in the uniaxial regime
is given in terms of the nematic tensor order parameter and its
spatial derivatives as

FLdG =
∫

�

dV

(
a0� T

2
Qi jQji − B

3
Qi jQjkQki

+ C

4
(Qi jQji )
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)
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FIG. 1. (a) Schematic defect structure inside a nematic spherical
shell. R = 0.5 μm and a are the radii of outer and inner spheres,
respectively, �r shows the center-to-center distance vector of the two
spheres, and θ expresses the polar angle of �r with respect to the
z axis. Axis z is determined by the normal vector of the surface
containing the saturn ring defect around the inner sphere shown
by red color. Boojum defects on both surfaces are also shown by
red dots. (b) A schematic of the conically degenerate anchoring.
Equilibrium direction n̂e freely can rotate on a cone with the vertex
angle ψe = 45◦. Surface normal vector ν̂(= ê(1) × ê(2) ) defines a
right-handed coordinate system in which the ê(2) axis lies in the plane
surface of ν̂ and n̂.

where
∫
�

dV represents integrating over the space filled by
the NLC. The indices refer to the Cartesian coordinates;
the Einstein summation convention is assumed [38]. The
first three terms describe the isotropic-nematic phase transi-
tion. Positive coefficients a0, B, and C depend on the NLC
material and �T = T − T ∗, where T ∗ is the nematic su-
percooling temperature. The bulk scalar order parameter in
the uniform nematic phase is given by Sb = (B/6C)(1 +√

1 − 24a0�TC/B2). The last term is the contribution of
elastic distortions in one-constant approximation with co-
efficient L1. Frank elastic moduli are related to the above
parameters as Ksplay = Ktwist = Kbend = 9L1S2

b/2. We use the

FIG. 2. General director field and defect structure of the shell
with heterogeneous thickness.

5CB nematic parameters (a0 = 0.087 × 106 J/m3 K, T ∗ =
307.15 K, T = 305.17 K, B = 2.12 × 106 J/m3, C = 1.73 ×
106 J/m3, L1 = 4 × 10−11 J/m) [39,40].

A schematic of the considered geometry is given in
Fig. 1(a). The nematic shell has been confined with two spher-
ical surfaces. The shell radii in the inner and outer boundaries
are a and R, respectively. We scale all the lengths with the
outer radius R = 0.5 μm. The inner core is spatially specified
by r and θ concerning the center of the outer sphere. The
inner and outer boundaries have degenerate conic and planar
anchorings, respectively. To this end, we introduce the surface
energies in terms of the nematic tensor as

FS = W1

2

∫
inner

dS
(
Qi j − Qe

i j

)(
Qji − Qe

ji

)

+W2

∫
outer

dS
(
Q̃i j − Q̃⊥

i j

)(
Q̃ ji − Q̃⊥

ji
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FIG. 3. Total free energy Fa(�r) dependence on off-center dis-
placement vector �r of the inner sphere for different amounts of
radius a.
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FIG. 4. Free energy dependence on the off-center displacement at various amounts of a with (a) θ = 0◦, (b) θ = 30◦, (c) θ = 60◦, and
(d) θ = 90◦. Free energy difference is defined as �F = Fa(�r) − Fa(0).

The first term satisfies degenerate conical anchoring on the
inner surface where the equilibrium tensor Qe

i j = Sb(3n̂e
i n̂e

j −
δi j )/2 is locally determined by the equilibrium conical
orientation, n̂e = ν̂ cos ψe + ê(2) sin ψe, on the surface. The
equilibrium director orientation n̂e locally makes an equilib-
rium conic angle ψe = 45◦ with the surface normal vector ν̂

[see Fig. 1(b)] [37]. The second term satisfies degenerate pla-
nar anchoring on the outer surface, where Q̃i j = Qi j + Sδi j/2
and Q̃⊥

i j = (δik − ν̂iν̂k )Q̃kl (δl j − ν̂l ν̂ j ) are uniaxial parallel and
projection tensors, respectively [41]. The anchoring strengths
are assumed to be in the strong regime as W1 = 5 × 10−3 J/m2

and W2 = 10−2 J/m2.
We have numerically used the finite element method

(FEM) to minimize the total free energy (F = FLdG +
FS) [11]. An automatic mesh generator has been employed to
discretize the nematic layer into tetrahedral elements [42]. The
nematic tensor is approximated as linear. The interpolation
validity depends on the deviations of nematic tensor inside
of each element, which can be improved by adjusting the size
of elements. In this study we chose the average element size
Le � 0.01R all over the shell. We use the conjugate gradient
method for minimizing the dimensionless free energy where
iteration stops when the free energy difference between the
steps shows a value smaller than 10−10 [43].

III. RESULTS AND DISCUSSION

Firstly we have considered an asymmetric shell to evaluate
the operation of surface energies on the inner and outer shell
boundaries. Figure 2 satisfies our elementary expectations.
The nematic layer indicates a pair of boojums on the outer
surface while simultaneously including a pair of boojums

and a Saturn ring defect on the inner surface. The director
deformations follow both bipolar defect texture [30] and hex-
adecapolar director configuration [23] around the outer and
inner surfaces, respectively. Although the disclination loop
does not move around, the point defects on the inner shell
show small displacements. We have found the same behavior
in thick asymmetric shells.

We have geometrically defined a reference coordinate sys-
tem based on that shown in Fig. 1(a), where the z axis is
parallel with the normal vector of the Saturn ring plane sur-
face and the x-z plane includes the centers of both spherical
surfaces.

FIG. 5. Maximum free energy values at maximum amounts of r
varying with θ . Inner sphere is nearly touching the wall of the outer
sphere.
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FIG. 6. Possible defect structures of NLC shells with conically degenerate and degenerate planar anchorings on inner and outer surfaces,
respectively: (a)–(c) boojums bipolar structure on a symmetric thick shell with a = 0.7R, (d)–(f) triangular defect texture on a highly
asymmetric shell with a = 0.7R, r = 0.2R, and θ = 0, and (g)–(i) tetrahedral defect structure in a very thin symmetric shell where a = 0.9R.
The first row shows defect structures and planar director field on the outer surface. The second and third rows show a cross section of the
director field inside the bulk and on the shell surfaces, respectively.

Figure 3 energetically explains the inner core treatment
as a function of geometrical parameters. Each point in the
three-dimensional (3D) plot shows an independent numeric
calculation. The energy landscape denotes that the inner core
tends to maintain its symmetric state. It shows that the core
moving toward the outer surface increases the free energy.
For a better insight, we define the free energy difference
as �F = Fa(�r) − Fa(0), which removes the reference of
energy in each radius of the inner core. Figures 4(a)–4(d)
represent more precisely that the shell is stable, since the cost
of elastic deformations prevents the shell destruction in the
absence of surface tension. The arrangement of defects in the
z axis at the poles of an asymmetric shell for θ = 0◦ [Fig. 4(a)]
causes the director to feel strong distortions with respect to the
θ = 90◦ case [Fig. 4(d)].

Slopes of the energy-displacement curves in Fig. 4 can
describe the mobility of the inner core around the symmetric
configuration, although we have not calculated the hydrody-
namics effect. In the presence of thermal fluctuations, the
thick shells can exhibit more freedom compared to the thin
shells.

Figure 5 illustrates the surface close contact interactions.
It includes the maximum free energy difference when the
inner core nearly touches the outer surface. The plots can
be treated as energy barriers when the inner core displaces
from θ = 90◦ to θ = 0◦. As shown in Fig. 5, the height of
barriers increases with decreasing the thickness of the nematic
shell, which varies from 10kBT (at a = 0.1R and θ = 90◦) to
104kBT (at a = 0.9R and θ = 0◦) in order of magnitude at
room temperature.
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The stable location of the inner core interestingly shows
inconsistent results when the shell surfaces have the planar-
planar and conical-planar anchorings. The inner core tends
to move out of the center and locate as close as possible
to the outer shell wall in planar-planar anchoring, while in
conical-planar anchoring, the inner core will keep its spatial
symmetric configuration. When the two spheres are almost
tangent (for a distance d → 0), the main distortion is localized
between the sphere surfaces (due to the anchoring incompat-
ibility) with a typical energy density of order (K/2)(�φ/d )2,
which repels the inner core but only when the difference of
anchoring �φ 
= 0.

Figures 6(a)–6(f) show defect textures in symmetric and
asymmetric geometries of a thick shell. The symmetric con-
figuration shows two pairs of boojums at the poles of the
inner and outer surfaces and a Saturn ring defect that encircles
the inner surface in the nematic shell. In the asymmetric
configuration, Saturn ring defects and boojums at the thick
part of the nematic shell preserve their structures. However,
the boojum core transforms from the single core to the split
core with two short disclination curves (s = +1/2) at the
thin region [44]. The disclinations join together via a surface
disclination (s = +1/2) on the inner core. The final disclina-
tion is geometrically called the handle-shape defect [45,46],
although it is energetically unstable. These disclinations are
compatible with the planar anchoring on the outer shell but
not with the conical anchoring on the inner; therefore the
formation of surface disclinations is necessary.

In the absence of the saddle-splay elastic contribution, as
shown in Figs. 6(g)–6(i), our calculations show four short
disclination curves (s = +1/2) that two-by-two make two
handle shapes in the thin symmetric shells. The two handle
shapes lie in perpendicular planes.

Present face-to-face boojum cores with axial symmetry in
the thin shell increase the splay deformation around the sur-
face point defects for equal elastic constants. In this regime,
the director is perpendicular to the surfaces somewhere near
the poles [see Fig. 6(b)]. The degenerate anchorings can de-
crease the cost of elastic deformations in the thin part of
shells with the broken nematic axial symmetry. Therefore
the director reorientation on surfaces gives rise to the single-
core boojum in the thick shells and transforms into the split
core boojum in the asymmetric and thin shells, as shown in
Figs. 6(e) and 6(h).

IV. SUMMARY

We numerically investigated the spherical NLC shells in
various thicknesses with degenerate conic and planar anchor-
ings on the inner and outer surfaces, respectively. By studying
the free energy behavior, we found that the symmetric nematic
shells are favorable configurations for each thickness. This is
a different result compared to planar anchoring on the sur-
faces where the inner particle tends to stand at the maximum
asymmetry degree of the shell. Our calculations showed that
the elastic deformations in the thick shells induce a pair of
boojums and a surface Saturn ring defect on the inner surface,
and a pair of boojums on the outer surface. In the thin shells,
the boojums respectively transform to four bulk disclinations
and two surface disclinations on the outer and inner surfaces
of the nematic shell. According to the hypothetical proposi-
tion of Ref. [2], the handle-shape defect lines can provide
two pairs of adjacent binding sites on the vertices of de-
fects to make potential colloidal polymer chains with double
bondings.
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