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Confined nematic liquid crystal between two spherical boundaries with planar anchoring
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Nematic shells of liquid crystals have been provided in microscales. Defect structures in the shells are very
essential in the electro-optical applications of such colloidal objects. We have numerically minimized the free
energy of symmetric and asymmetric spherical shells of the nematic liquid crystal. Considering degenerate planar
anchoring on the surfaces and isotropic nematic elasticity, a variety of defect structures are observed by controlling
or varying the thicknesses of the shell and its degree of asymmetry. In symmetric shells, our calculations show that
boojums (bipolar) defects appear in thick shells and tetrahedral (baseball) defects in thin shells. In asymmetric
shells, while we are in the bipolar regime, the boojums defects transform to trigonal configurations. Free energy
landscape shows that in this regime the inner droplet is not stable in the center and it is trapped in an off-center
minimum energy position. For the case of thin shells, there are two degenerate director textures with similar
tetrahedral configuration of the disclination lines. The levels are split in asymmetric shells. The stability of the
inner droplet in the center position depends on director texture. It is stable for one texture and unstable for the
other one. For an unstable pattern there is no minimum energy position for the inner droplet and it moves until it
touches the outer boundary.
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I. INTRODUCTION

Competition between elastic properties and boundary con-
ditions of the nematic liquid crystals (NLC), confined between
two spherical geometries, leads to beautiful topological defect
textures [1–5]. Such nematic shells, which are experimentally
made by double-emulsion techniques in microfluidic devices
[1,2,6], have potentially provided for electro-optic applications
[3,4] and microscale colloidal linkers [7]. The spatial distri-
bution of the defect textures completely depends on the shell
thickness and the anchoring of the director on the boundaries
[1,8]. A number of interesting states occur when one or
both of the boundaries have planar anchoring [9,10]. Here
we concentrate on the study of degenerate planar anchoring
on both surfaces. The equilibrium defect arrangements are
determined by the minimization of the elastic free energy in the
presence of the surface boundary conditions [11]. The induced
topological charges which are the main reason for the director
disagreement in the bulk and on the surfaces, are specified
by the amount of the director rotation about the defect core.
According to the Poincare-Hopf theorem, the total topological
charge on a spherical nematic drop with planar anchoring is
equal to +2 [12,13]. There are two main defect arrangements
as a function of thickness in symmetric shells. They are two
pairs of boojums (s = +1) at the north and south poles and
four disinclination line defects (s = +1/2) at the vertices of
a tetrahedron [1,3,8], respectively. It has been experimentally
understood that the boojums defects take place in thick shells
and the tetrahedral defects appear in thin shells [1]. There is a
crossover between their free energies which specifies the final
defect arrangement as a function of thickness [4]. A Monte
Carlo study shows that applying homogeneous external fields
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provide a transition from a four disinclination line defect to
a two pair boojums structure, and at inhomogeneous external
fields, the complicated defect arrangements appear in the shell
that may have positive and negative topological charges [14].
In the thin shells, provided that the bend elastic constant Kbend

is larger than the splay elastic constant Ktwist, the tetrahedral
line defects are rearranged on a great circle [9,15].

Fernandez-Neives and co-workers experimentally show
that the inner droplet with nearly constant velocity moves to the
outer surface and does not keep its spherical distribution [1].
They argued that the balance between the elastic properties
and the media drag forces specifies the particle motion [8].
This behavior takes place in both boojums and tetrahedral
defect textures. In the two pair boojums case, the inner droplet
displaces along the line joining the boojums defects [1]. Recent
free energy minimization of a thin shell has explained that due
to a small negative slope in the media elastic potential about
the symmetric situation, the inner droplet moves out, even
in the absence of the buoyancy forces [9]. In tetrahedral
regimes, the elastics distortions and the defect textures are
limited to the thinner part of the nematic shell [3,8,9].

In asymmetric geometries, the director distortions can
induce a wide range of defect textures dependent on the
thickness of the shell and properties of the nematic elasticity
[2,3,8,9]. One of them is characterized by two defects s =
+1/2 and a defect s = +1 where they are geometrically
introduced as an isosceles triangle in the shell [3,8]. Their equal
angles that contain s = +1/2 defects are spatially distributed
in the thinnest area. Another defect ordering includes two
s = +1 [3]. Although the accumulation of the defects in the
thin part of the nematic shell decreases the cost of the elastic
energy, the repulsion between defects prevents coalescence
[14,16].

In this paper we numerically study the topological defect
textures in the spherical NLC shells by minimizing the sum
of elastic Landau–de Gennes free energy and the planar
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degenerate surface energy introduced by Fournier and Gala-
tola. We investigate the behavior of defects at different spatial
arrangements of the inner droplet in the shell.

II. THE MODEL

The geometry of the studied system is schematically
illustrated in Fig. 1(a). We consider a confined nematic shell
between two spherical surfaces. The shell radii in the inner
and outer boundaries are a and R, respectively. We scale all
the lengths with respect to the outer shell radius R. The line
joining the center of the spheres is given by � and the shell
thickness is defined by h = R − a at the � = 0.

A local traceless and symmetric tensor order parameter
Qij = S(n̂i n̂j − δij /3) can describe the nematic order in
confined media, in which the scalar order parameter S and the
director orientation n̂ are determined by the largest eigenvalue
λmax = 2

3S, and its corresponding eigenvector of the tensor
Q, respectively. Here we use the tensor order parameter with
six components Qxx , Qxy , Qxz, Qyy , Qyz, and Qzz, where
Qxx + Qyy + Qzz = 0. The director has degenerate planar
anchoring on the shell boundaries. The equilibrium orientation
of the director field is determined by balancing both bulk and
surface properties of the director.

FIG. 1. (Color online) (a) A cross section of the 3D studied
system, passing through the centers of inner (O) and outer (O ′)
spheres. The nematic shell is confined between two spheres with
radii a and R. �(=OO ′) is the distance between the centers of the
spheres. (b) A typical tetrahedral mesh used in the FEM calculations.
(c) The figure shows the size distribution of tetrahedral elements at
different thicknesses h(=R − a) in the symmetric shells (� = 0),
where the characteristic size of any tetrahedral element Le is the size
of a regular tetrahedral with equal volume.

A. The bulk free energy

The bulk free energy of the nematic fluid in the absence
of the buoyancy forces is described well by the Landau–de
Gennes model [17], in which the free energy functional is
expanded in powers of the tensor order parameter and its spatial
derivatives:

Fb =
∫

�

dV

[
A

2
QijQji − B

3
QijQjkQki + C

4
(QijQji)

2

+ L1

2
∂kQij ∂kQij + L2

2
∂iQik∂jQjk

+ L3

2
Qij∂iQkl∂jQkl

]
, (1)

where the indices refer to Cartesian coordinates, the sum-
mation over repeated indices is assumed, and � denotes the
liquid crystal volume. The first three terms are the Landau–de
Gennes free energy which describe the bulk isotropic-nematic
(IN) transition. The coefficients A, B, and C are the material-
dependent parameters.

The derivative terms are the contribution of the elas-
tic free energy in the nematic phase. The nematic elastic
constants L1, L2, and L3 are related to the Frank elas-
tic constants by L1 = (3Ktwist − Ksplay + Kbend)/6S2, L2 =
(Ksplay − Ktwist)/S2, and L3 = (Kbend − Ksplay)/2S3.

In this study we restrict ourselves to an one-elastic constant
approximation that means all the Frank elastic constants should
be equivalent, which leads to L2,L3 = 0.

To simplify calculations we rescale the tensor order pa-
rameter as q = (4B/3

√
6C)−1Q, such that qij = Ŝ(n̂i n̂j −

δij /3), where Ŝ = (4B/3
√

6C)−1S. As a consequence, the
dimensionless free energy becomes

F̂b = Fb

f0R3
=

∫
�

dV

R3

[
τ

2
qij qji −

√
6

4
qij qjkqki

+ 1

4
(qij qji)

2 + 1

2
ξ 2∂kqij ∂kqij

]
, (2)

where f0 = C(4B/3
√

6C)4, τ = 27AC/8B2 is an effective
dimensionless temperature, and ξ =

√
27L1C/8B2 is the ne-

matic coherence length [18]. In this redefinition of parameters,
the fluid undergoes a first-order isotropic-nematic transition at
τ = 1/8. The isotropic phase becomes unstable for τ < 0.
The scalar nematic order parameter in bulk is given by Ŝb =
(3

√
6/16)(1 + √

1 − 64τ/9). The dimensionless temperature
and coherence length were set to τ = (3

√
6 − 8)/12 and

ξ/R = 0.0707, respectively. This choice of parameters closely
match the parameters of the widely used liquid crystal mesogen
5CB and results in formation of stable topological defects
[18,19].

B. The surface free energy

The preferred anchoring can be modeled with much more
ease [20,21] compared to the degenerate planar anchoring due
to uniqueness of the orientation of nematic fluid in the vicinity
of the surfaces. Fournier and co-workers [22] have introduced
a two-parameter surface energy functional that is bounded
from below and assumes its minimum in the manifold of
degenerate planar configurations. The surface energy consists
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of two terms, controlling the planar anchoring and fixing
the scalar order parameter on the surface. Since we expect
formation of topological surface defects, we relax the second
constraint [19,23], resulting in the following single parameter
surface energy functional:

Fs = W

∫
∂�

dA (Q̃ij − Q̃⊥
ij )(Q̃ji − Q̃⊥

ji), (3)

where Q̃ij = Qij + Sδij /3, Q̃⊥
ij = (δik − ν̂i ν̂k)Q̃kl(δlj − ν̂l ν̂j )

is the projection of Q̃ij onto the tangent plane of the surface,
and ν̂ is the normal to the surface. The positive anchoring
coefficient W controls the stiffness of anchoring. According
to a dimensionless recipe in the bulk free energy subsection,
the surface energy can be written in dimensionless variables
as

F̂s = Fs

f0R3
= w

R

∫
∂�

dA

R2
(q̃ij − q̃⊥

ij )(q̃j i − q̃⊥
ji), (4)

where w = 27WC/8B2, q̃ij = (4B/3
√

6C)−1Q̃ij , and q̃⊥
ij =

(δik − ν̂i ν̂k)q̃kl(δlj − ν̂l ν̂j ). We have set the anchoring length
to w/R = 0.3125 [19,24], which is much larger than the
coherence nematic length in this study. That means the choice
leads to a strong degenerate anchoring of the 5CB mesogens
on the surfaces.

III. NUMERICAL MINIMIZATION OF
THE FREE ENERGY

We adopt a finite element method (FEM) to minimize the
free energy functional, described in the preceding sections. As
shown in Fig. 1(b), the nematic shell was decomposed into
tetrahedral elements by using the automatic mesh generator
Gmsh [25]. The tensor order parameter was linearly interpo-
lated within each element of the mesh for the evaluation of
the free energy integrals. The validity of linear interpolation
depends on the order parameter deviations within each
element. By diagonalization of the Hessian matrix, constructed
by the order parameter, one can evaluate the mesh resolution
[26]. Here we have manually arranged a series of the mesh
adaptive runs, decreasing the mesh length size on the shell
surfaces and minimizing the system free energy to evaluate
the Hessian matrix. The mentioned procedure is repeated until
the largest absolute eigenvalue of the Hessian is converged for
any element. The size distribution of tetrahedral elements, in
Fig. 1(c), shows that the size of the refined elements are small
in comparison to the coherence length. For each configuration
of the nematic shell (means for different a and �), the
total dimensionless free energy F̂ (=F̂b + F̂s) was minimized
using a conjugate gradient (CG) method [27], where the
minimization procedure was stopped when the relative free
energy improvements dropped below 10−8. We present and
discuss the results in the next section.

IV. RESULTS AND DISCUSSION

To begin, we numerically study symmetric nematic shells
(� = 0) of different thicknesses h(= R − a). In agreement
with experimental observations [1,3], our calculations reveal
two main defect configurations: (a) two pair boojums in thick
shells and (b) tetrahedral structure in thin shells. As shown in
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FIG. 2. (Color online) (a)–(d) Profiles of the scalar order param-
eter in the bulk and on the outer surface of nematic liquid crystal
shells. Inside the bulk, anywhere the scalar order parameter is lower
than 0.5Ŝb, is highlighted, which represents a topological defect.
The director field has been specified by dashed lines. (a) and (b)
Configurations with boojum defects for h/R = 0.8, and (c) and
(d) are presenting configurations containing tetrahedral defects for
h/R = 0.35. Free energy densities as a function of thickness of the
shell, for both boojums and tetrahedral defect configurations, are
presented in (e). The parameters are rescaled to be dimensionless
(see text). The graph shows a level crossing on h ≈ hc ∼ 0.666R. To
zoom on a level crossing point, the region around the point has been
scanned by higher resolution. The inset shows the energy difference
between two energy levels �F = Fboojums − Ftetrahedral on this region.

Figs. 2(a) and 2(b), the defects of the thick shells are specified
by two pairs of boojums of strength s = +1 at those poles of
the two concentric spheres which are aligned along one of their
common diameters. In thin shells, the tetrahedral structure, as
shown in Figs. 2(c) and 2(d), is composed of four disclination
line defects of strength s = +1/2 resembling sp3 arrangement
of the atomic bonds of diamond [3]. As one can see in Fig. 2(d),
on both shell boundaries, the equilibrium director orientations
exhibit baseball patterns [4].
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We make an energy comparison between the boojums and
the tetrahedral defect configurations. The dimensionless free
energy densities (DFED) of both configurations F̂ /(R3 − a3)
in terms of the dimensionless thickness h/R are shown in
Fig. 2(e). Gradually decreasing the symmetric shell thickness,
an energy level crossing is observed in hc ∼ 0.666R, where
the boojums defect structure undergoes a transition to the
tetrahedral configuration. hc marks the limit of stability for
the boojums and the tetrahedral configurations, so that the
boojum configurations appear in h > hc and the tetrahedral
configurations in h < hc. hc is theoretically specified by the
defect core radius rc of the shells [4]. In our results, rc

R
in the

critical thickness hc shows a small deviation from that reported
in experiment, 1.47( rc

R
)expt [1]. Around the critical thickness,

the energy difference between the boojums and the tetrahedral
structures is a linear function of the shell thickness [see inset
plot in Fig. 2(e)].

For the case of the asymmetric shells (� �= 0), which are
constructed from eccentric spheres, we arrange a series of
the free energy minimizations at different shell thicknesses
(h = R − a) with respect to the degree of asymmetry �

to determine an effective media elastic potential on the
inner droplet. We see that the stability of the system is
increased by getting more deviated from symmetric shell
configurations. So the inner droplet tends to hold its center
far from the the center of the outer sphere. The two differ-
ent thickness limits h > hc and h < hc will be separately
discussed.

For the case of h > hc, the DFED of the system with respect
to the scaled degree of asymmetry �/R is shown in Fig. 3(a).
The droplet movement is performed along the diameter passing
through the boojums defect cores of the symmetric shell state.
Varying the shell degree of asymmetry, three different defect
structures may be observed.

Our calculations show that the two pair boojums config-
urations can be maintained only for small deviations from
symmetric shells. For thinner thicknesses of the asymmetric
shell, the boojums configurations are less stable.

For large degrees of asymmetry, a new defect configuration
appears which is characterized by two disinclination line
defects (s = +1/2) and a pair of boojum defects (s = +1)
on the opposite side [see Figs. 3(b) and 3(c)]. There are small
discontinuities in the slope of the free energy which are related
to rearrangement of the defects in the shell. The fracture is
more visible for thicker shells.

For h < 0.85R, the inner droplet is running out of the
center, but there is a minimum energy position in the free
energy profile and rearrangement of the defects in the thinner
side of the shell prevents the two spheres from touching each
other. By going to thicker shells (h � 0.85R), the DFED slope
indicates that the shell cannot preserve its stability, and the
droplet reaches the outer wall, which is consistent with the
experiments [1].

Focusing on the transition of the defect structures from
boojums to trigonal texture, we see an unstable phase which
is called a double-core boojum. As shown in Figs. 3(d) and
3(e), the double-core defect has been distributed on the outer
boundary of the thinner part of the shell.

Starting from the boojums structure, the DFED has a very
smooth peak at the � = 0. Then, our calculations show in the
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FIG. 3. (Color online) (a) The DFED for h > hc as a function
of degree of asymmetry �/R. Square, circle, and triangle symbols
correspond to the structures of boojums, transition state, and trigonal,
respectively. (b)–(e) The scalar order parameter and related director
field in the bulk and on the surfaces of the shell for h/R = 0.75. The
trigonal defect is shown for �/R = 0.2 (b) and (c), and the transition
state (boojums-trigonal) for �/R = 0.3 (d) and (e).

absence of the buoyancy forces the symmetric position of the
inner droplet is unstable.

In the limit h < hc, as it has been mentioned before, defects
have tetrahedral structure in symmetric shells, but there are
two possibilities for the director texture on the surface. One
has a baseball pattern. If the director field is rotated locally
by 90◦, the other pattern is obtained which we call zonal.
Both textures, which have been numerically obtained by
different initial director orientations, are characterized by four
disclination line defects (s = + 1

2 ) and have equal energy in
one constant approximation. This degeneracy has also been
reported in [9]. For an asymmetric shell the degenerate level
is split into two. For the baseball pattern, the free energy is
higher than the symmetric configuration, which indicates that
the pattern is a stable configuration [red dots in Fig. 4(a)].
For a zonal pattern, a pair of defects prefer to approach each
other. The green curve in Fig. 4(a) shows the DFED of the
system in this transition. The energy decreases by the degree
of asymmetry. Thus the inner droplet is unstable at the � = 0.
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FIG. 4. (Color online) (a) The DFED for h < hc as a function of
degree of asymmetry �/R. Diamond, circle, and triangle symbols
correspond to the structures zonal-tetrahedral, baseball-tetrahedral,
and trigonal, respectively. (b)–(e) Scalar order parameter and related
director field in the bulk and on the surfaces of the shell for
h/R = 0.40 and �/R = 0.15. (b) and (c) A baseball pattern from
two viewpoints and (d) and (e) similarly show a zonal pattern.

In contrast to the thick shells, there is no minimum in the
energy profile of thin shells, and nothing prevents the inner
droplet from touching the other surface.

V. SUMMARY

In summary, in this study the configuration of defects and
the director patterns on a shell of nematic liquid crystal have

been discussed. The shell is confined between two spherical
boundaries. The surfaces have degenerate planar anchoring
and one-constant approximation of the elastic energy is
assumed.

Although it is simple to make a symmetric shell of the
nematic medium on computer, it is not easy to keep the inner
droplet in the center of the shell. Practically, due to buoyancy
forces and also dynamics of defects, the droplet may run from
the center and be trapped in a minimum free energy position.
Here we have ignored buoyancy forces and, just by minimizing
the free energy of the system, we have investigated defect
structures of symmetric and asymmetric shells.

For the symmetric shell, where two boundaries are con-
centric, the defect structure depends on the thickness of
the shell. For thick shells two pairs of boojums (s = +1)
appeared across a diameter. By decreasing the thickness, the
approaching boojums in a critical distance hc transform to pairs
of disclination lines (s = +1/2) and forms a sp3-like structure.
In this configuration of defects, according to numerical initial
orientations, two different patterns of nematic texture (baseball
or zonal) may be observed. Both have the same energy, thus,
the ground state of the symmetric thin shell is degenerate.

By moving the inner droplet off the center, we have scanned
the system free energy landscape for different degrees of
asymmetry of the shell. As soon as the thickness of the shell in
its thinner part passes critical thickness hc, the boojums defects
on that part transform to disclination lines and they arrange a
trigonal configuration of defects. Free energy landscape shows
that for this regime the inner droplet is not stable in the center
and it is trapped in an off-center minimum energy position.

For the case of thin shells, by moving the inner droplet,
the degenerate energy level of the symmetric shell is split into
two separate levels. One has higher energy, which shows that
the baseball state is stable as its energy is increased by degree
of asymmetry. On the other hand, the zonal configuration is
unstable and the droplet prefers to run off the center. In this
case the free energy landscape does not show any minimum
energy position, and the inner droplet moves until it touches
the outer boundary.
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