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In this study, we numerically investigate the interactions between pentagonal truncated pyramids in a nematic
liquid crystal host. The colloidal arrangements are investigated by minimizing the Landau-de Gennes free energy
in presence of homeotropic anchoring surface energy upon the particles. We further explain the interactions using
symmetry breaking in the director field and particle-particle relative arrangements. In the case of long-range
separations, interactions exhibit some deviations from those observed in the case of dipolar symmetry. We also
exhibit that, in some cases, decreasing the bending elastic distortions between two adjacent lateral faces will
cause a nonhorizontal side-to-side configuration. In many-body interactions, we evaluate the ability of the bent
and branch configurations to form complex self-tiling assemblies pentagonal truncated pyramid blocks.
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I. INTRODUCTION

The formation of nano- and microscale colloidal struc-
tures in uniform nematic liquid crystals (NLCs) is generally
controlled by anchoring the liquid crystal mesogens on sur-
faces [1–4] and the shape of the colloids [5–11]. Anchor-
ing causes the director, n̂, around an isolated colloid to be
elastically distorted from the uniform orientation in the far
field, n̂0. Depending on the spatial arrangement and anchoring
strength of the molecules at the surface of the colloid, director
discontinuities may appear in the form of points or lines in the
media in which defects are observed [12].

In spherical geometries, the particle defect exhibits elas-
tic deformations with dipole or quadrupole symmetries in
the electrostatic analogy which decays with distance, D, as
D−3 or D−5, respectively [1–3,13–15]. In the case of close
particle-particle separations, the defects topologically have
complex and entangled structures due to symmetry break-
ing [16,17] and play a crucial role in anisotropic interactions
[13,18–20]. The self-assembled structure of the colloids is
ultimately acquired by the competition between short- and
long-range colloidal interactions in the nematic host [21–23].

In the case of ellipsoids, the aggregations of the elongated
and flattened spheroid colloids are specified by the aspect
ratios of the ellipsoids [6,24]. The micro- and nanorod col-
loids with homeotropic anchoring are observed to spatially
form chain or side-by-side configurations with dipolar and
quadrupolar symmetries [5,25]. The competition between the
long-range elastic and electrostatic interactions of nanorod
colloids with positive surface charges leads to triclinic ne-
matic pinacoidal lattices [26].
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In a nonspherical case, the low symmetry of the par-
ticles cause the NLC elastic deformations around the col-
loids to be individually reliant on the colloidal shape and
spatial arrangements that are relative to the bulk director
field. The self-assembly of such colloidal building blocks has
drawn considerable attention in both soft condensed matter
science and technology [7,8,27,28]. The pentagonal colloidal
platelets that are immersed in NLCs form quasicrystalline
structures that are known as Penrose tiling patterns [27].
The self-assembly of rectangular and hexagonal microsheets
with planar anchoring in NLCs results in the creation of
a large two-dimensional (2D) tiling texture [28]. The close
contact interactions of platelets exhibit that platelets with
quadrupolar elastic deformation are bounded more strongly
than the platelets with dipolar symmetry [29]. The faceted
nanocubes and triangular nanoprisms with homeotropic an-
choring induce large disclination loops in NLCs, which screw
six of the cubic particle edges and two of the triangular faces,
respectively [30].

Recently, it has been exhibited that polygonal truncated
pyramids (PTPs) can create 2D complex crystalline and qua-
sicrystalline colloidal structures. In such structures, close con-
tact interactions are observed to be geometrically dependent
on the tiling fragments and arrangements, and additionally,
the long-range interactions exhibit a dipolar type, indepen-
dent of the polygon symmetry [31]. Further, the polygo-
nal platelet colloids with planar anchoring induce dipolar
or quadrupolar symmetry when polygons have odd or even
side numbers, respectively [7]. The strong binding energy
between the blocks results in their stability against external
perturbations; this allows the PTP lattices to be considered as
candidates for usage in colloidal photonic and electro-optic
applications [31]. The rearrangement of the disclination lines
at the edges of the polygonal prisms alters the symmetry of
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the director orientation around the colloids and the nature of
elastic interactions in the colloidal structures [32]. The self-
tiling of the pentagonal truncated pyramids with homeotropic
anchoring can also form quasicrystalline Penrose patterns in
contrast to that formed in the case of pentagonal platelets
with planar anchoring. Thus the PTP colloids that exhibit
a low symmetry can display novel kinds of particle-particle
interactions with distinct features in NLCs. Further, their
different spatial arrangements increase their versatility, which
allows their usage in different applications.

In this study, we numerically investigate the interactions
between pentagonal truncated pyramids (pentagonal TPs) in
a NLC host. We also investigate the colloidal arrangements
with homeotropic anchoring by minimizing the Landau-de
Gennes free energy. Further, the disclination line defects that
are observed around the colloids with different arrangements
are also investigated.

II. GEOMETRY

We investigate the colloidal-pair interactions of identi-
cal pentagonal truncated pyramids in a uniform NLC, n̂0 =
(0, 0, 1). The immersed particles also exhibit homeotropic
anchoring. In Fig. 1 the radius, R (=0.5 μm), is the system
length scale that joins the center to one of the vertices in
the small pentagonal base. The height, H (= R/5), specifies
the distance between the pentagonal bases. In this case, the
thickness of the particle would be H + 2r where r (=0.05R)
refers to the roundness of the edges. The large base radius
can be given as R + H tan α, where α is the tilted angle of
the lateral faces. PTPs have been experimentally investigated
over a vast range of edge sizes and therefore α angles [31].
Here we use pentagonal TPs with α = 15◦ close to what has

been experimentally studied. The cell dimensions are Lx =
Ly = 25R and Lz = 15R.

III. MODEL

We employ a traceless and symmetric tensor
order parameter, Qij (�r ) = S(�r )(3n̂i (�r )n̂j (�r ) − δij )/2 +
P (�r )(l̂i l̂j − m̂im̂j )/2, to characterize the nematic fluid. The
scalar order parameter, S, and the director orientation, n̂, are
locally determined by the largest eigenvalue of the tensor
order parameter, λmax = S, and its corresponding eigenvector,
respectively. Though the nematic order is observed to
be uniaxial, it may be locally biaxial near the surfaces
when strong deformations are observed. Generally, the
tensor order parameter exhibits three different eigenvalues,
λ1 = −(S + P )/2, λ2 = −(S − P )/2, and λ3 = λmax = S

with the corresponding eigenvectors of l̂, m̂, and n̂(= l̂ × m̂),
respectively (λ3 > λ2 > λ1). Thus, the biaxiality can be
given as P = λ2 − λ1. Due to the presence of particles with
specific anchorings in the uniform nematic host, the director
undergoes elastic distortions around the particles. In a uniform
nematic phase without an intrinsically biaxial order, biaxiality
is observed in the vicinity of defects [33]. The Landau-de
Gennes model can explain such distortions in terms of the
tensor order parameter and its spatial derivatives as

FLdG =
∫

�

dV
[
a0(T − T ∗)

2
QijQji − B

3
QijQjkQki

+ C

4
(QijQji )

2 + L1

2
∂kQij ∂kQij

]
, (1)

where the indices refer to the Cartesian coordinates, the
Einstein summation convention is assumed, and � refers
to the volume of the NLC [34]. The initial three terms

FIG. 1. (a) A schematic of the calculation cell. The director has been set parallel to the z axis at the boundaries. Panels (b) and (c) are,
respectively, parallel and antiparallel pentagonal truncated pyramids with an opposite apex-base direction with respect to the z axis. (d) A sharp
part of the lateral face. α is the angle between lateral edge and height, H . The edges are rounded with roundness radius, r , to keep the director
away from unrealistic behaviors. Panels (e) and (f) are the top and bottom parts of (d), respectively, where β = 90◦ − α and γ = 72◦. (g) An
adaptive tetrahedral mesh is manually used to perform the finite element method calculations.
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mainly describe the bulk isotropic-nematic transition in
the thermotropic liquid crystals. It generally determines
the equilibrium scalar order parameter, Seq, in terms of
temperature, T . The material-dependent coefficients, such as
a0, B, and C, are positive and temperature independent. T ∗ is
the isotropic supercooling temperature. The final term is the
contribution of the elastic distortions in the NLC. The constant
L1 is related to the Frank elastic constants using one-constant
approximation as Ksplay = Ktwist = Kbend = 9L1S

2
eq/2 [35].

The normal anchoring effect on the surface of the particles
can be given by Nobili’s tensorial surface potential as

FSurface = W

2

∫
∂�

dS
(
Qij − Qs

ij

)(
Qji − Qs

ji

)
, (2)

where W is a positive constant that controls the anchoring
stiffness, ∂� denotes the area of all the immersed
particles in nematic media, and the tensor order parameter,
Qs

ij = Seq(3ν̂i ν̂j − δij )/2, is specified by the preferred
direction at the surface, ν̂ [36,37]. Here we impose
homeotropic anchoring for the case in which ν̂ is a
normal unit vector normal to the surface of the pentagonal
TPs. We have chosen the Landau parameters of 5CB as
a0 = 0.087 × 106J/m3 K, T ∗ = 307.15 K, T = 305.17 K,

B = 2.12 × 106 J/m3, C = 1.73 × 106 J/m3, and L1 =
4 × 10−11 J/m, and have imposed strong normal anchoring
by choosing W = 10−2 J/m2 [16,33,38].

To simplify the calculations, we use dimensionless free
energy and rescale the order parameter as S = η(B/C)Ŝ,
where η = 1/4. As a result, the total free energy becomes

F̂ = F
f0R3

=
∫

�

dV
R3

[
τ

2
qij qji − 1

3η
qij qjkqki

+ 1

4
(qij qji )

2 − f̂eq(τ )

]

+ 1

2

ξ 2

R2

∫
�

dV
R3

∂kqij ∂kqij

+ 1

2

w

R

∫
∂�

dS
R2

(qij − qs
ij )(qji − qs

ji ), (3)

where f0 = η4B4/C3, qij = Ŝ(3n̂i n̂j − δij )/2 is the rescaled
tensor order parameter, τ = a0(T − T ∗)C/η2B2 � −1.05
is an effective dimensionless temperature, f̂eq(τ ) =
(3τ/4)Ŝ2

eq − (1/4η)Ŝ3
eq + (9/16)Ŝ4

eq is the dimensionless bulk
free energy density in terms of dimensionless temperature,
Ŝeq = (1 +

√
1 − 24τη2)/6η is the equilibrium rescaled order

parameter, ξ =
√

L1C/η2B2 � 0.03R is a nematic coherence
length, and w = WC/η2B2 � 0.122R is the anchoring
length [39].

IV. NUMERICAL METHOD

A finite element method [40] was employed to minimize
the total dimensionless free energy. The automatic mesh
generator Gmsh [41] was used to decompose the calculation
domain into tetrahedral elements. The tensor order parameter
elements were further linearly interpolated within each
mesh element. The validity of linear interpolation depends
on the order parameter deviations within each element
that are controlled by the mesh size. As depicted in

Fig. 1(e), the tetrahedral elements have been refined
around the particle. Recent studies that use the Delaunay
triangulation-tetrahedralization algorithm set the element
size, Le, on the particles to Le = 0.0025R and on the
cell boundaries to Le = R [42]. The conjugate gradient
method [43] is used to minimize the free energy, and
the iteration steps were terminated when the free energy
difference of the two sequential steps dropped below 10−10.
For each the spatial orientation of particles, the initial director
profile was numerically adopted from the optimized director
arrangement of the closest particle-particle separation [40].

V. RESULTS

As depicted in Fig. 2(a), the director field deviations, which
are due to the normal anchoring on the surface of the particles
that are immersed in a uniform nematic media, lead to a closed
disclination line defect with a pentagonal shape that surrounds
the lateral faces at a large base [31]. In each cross section of
the disclination loop in which the NLC effectively displays a
quasi-2D behavior, the defect structure is formally described
by the winding number, k = ψ/2π = −1/2, where ψ is the
amount of rotation of the director around the defect core in
radians [34]. The closed disclination loops of strengths −1/2
and +1/2 are topologically equivalent to the hyperbolic m =
−1 and radial m = +1 hedgehog charges, respectively [35].
The sum of hedgehog charges, which are due to point
defects and disclination loops, is specified by the surface
Euler characteristic, χEuler, as

∑
i mi = ±χEuler/2 [12]. The
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FIG. 2. (a) The director orientation at far distances and around
a pentagonal TP. A disclination line defect of strength −1/2 sur-
rounds the object at the large base. The dashed lines in the se-
lected section exhibit the director behavior inside a liquid crystal
colloid with a pentagonal TP shape for boundaries that display
homeotropic anchoring. The director lies in the plane and forms a
point topological defect of strength +1/2 in a disclination line loop.
(b) The effective energy of an isolated particle at different spatial
arrangements with respect to the x-y plane, (c) θ = 0◦, (d) θ = 30◦,
(e) θ = 60◦, and (f) θ = 90◦. The free energy difference is given by
�F = F (θ ) − Fref where Fref = F (θ = 0) = 1.950 × 103kBT . For
oblique orientations, a part of the closed line defect jumps from the
large base to the small base. In all the arrangements, the defect line
is observed to pass through sharp edges. The scalar order parameter
has been specified for lower than 0.5Ŝeq. (g) The green tube exhibits
the biaxiality of the isosurface with P̂ = 0.1. The tube contains the
defect loop.
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(a) Δχ = 0◦ (c) Δχ = 0◦ (e) Δχ = 0◦

(b) Δχ = 36◦ (d) Δχ = 36◦ (f) Δχ = 36◦
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FIG. 3. Interactions of two identical pentagonal TPs at θ = 0◦

with homeotropic anchoring and the same pyramid axis in a uniform
nematic media. �χ is the difference between the orientations of the
particles around the pyramid axis. Panels (a) and (b) exhibit parallel
(
⊙

/
⊙

) configurations, whereas panels (c)–(f) exhibit antiparallel
(
⊙

/
⊗

or
⊗

/
⊙

) configurations. (g) The effective potential ener-
gies of two particles versus the colloidal center-center distance, D,
for the configurations that are shown above. The inset log-log plot
compares the long-range interactions with the dipolar potential. The
scalar order parameter has been specified for lower than 0.5Seq.

pentagonal TP defect charges are similar to those of the
spheres in uniformly aligned liquid crystal media with
the same Euler characteristic, χEuler = 2, and normal
boundary conditions [31]. Because of the colloidal geometry,
the closed defect does not exhibit a mirror symmetry with
respect to the midplane of an individual pentagonal TP.
The cost of the elastic distortions ensures that the base
of an isolated pentagonal truncated pyramid is always
perpendicular to the orientation of the uniform bulk director
when homeotropic surface anchoring is imposed on the
particle. As shown in Figs. 2(d)–2(f), the defect line is
not bound to the large base in oblique orientation cases.
Figure 2(g) depicts that the biaxial order, P̂ (= (C/η B )P ), is
induced only around the edges of the base plate in which the
director field is strongly deformed.

In many-body systems, the two-by-two colloidal interac-
tions play an important role in the collective behavior of the
particles. Figures 3 and 4 depict the effective potential ener-
gies of two particles versus colloidal center-center distance for
cases in which the two pentagonal TPs approach each other
from their flat and tilted faces.

As shown in Fig. 3(g), the pentagonal TPs attract each
other in the parallel (

⊙
/
⊙

) configurations and repel each

(a) Δχ = 0◦ (b) Δχ = 0◦

(c) Δχ = 36◦ (d) Δχ = 36◦

(e) Δχ = 36◦ (f) Δχ = 36◦
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FIG. 4. Interactions of two identical pentagonal TPs at θ = 0◦

with homeotropic anchoring in a uniform nematic media. The parti-
cles are arranged side by side when their top bases (or their bottom
bases) stand in the same plane. �χ is the difference between the
orientations of the particles around their pyramid axes. Panels (a),
(c), and (e) exhibit parallel configurations, (

⊙ ⊙
). Panels (b), (d),

and (f) exhibit antiparallel configurations, (
⊙⊗

). (g) The effective
potential energies for the above configurations are determined in
terms of the distance between the particle axes, D. The inset log-log
plot compares the long-range interactions with the dipolar potential.
The green triangular points in the circle refer to the nonhorizontal
states of (e) with φ1 = φ2, which are explained in Fig. 6. The scalar
order parameter has been specified for lower than 0.5Seq.

other in the antiparallel (
⊙

/
⊗

or
⊗

/
⊙

) configurations
when particles approach each other along the same pyramid
axis. In each configuration, the long-range interactions exhibit
no dependency on the relative colloidal orientations, �χ , and
show slight deviations from the dipolar elastic interaction,
(D/R)−3, where D is the center-center distance. In attractive
regimes, the colloids can be influenced by the torques that are
applied at the short distances, and the nonzero orientations
(�χ �= 0) can lead to Fig. 3(a) by a set of rotational and
translational movements. The colloids undergo strong repul-
sive forces when the small bases are set against each other.
Further, the repulsive interactions are almost independent of
the relative colloidal orientations at any separation distance.

In the side-to-side cases that are shown in Figs. 4(a)–4(f),
the interactions of two particles have been investigated as
a function of distance between parallel pyramid axes. The
bottom bases lie in the same plane when they are perpen-
dicular to the far unperturbed director field. In the case of
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FIG. 5. The defect rearrangements of two identical pentagonal TPs at small separations with parallel configurations (
⊙ ⊙

). The particles
have been studied at θ = 0◦ with homeotropic anchoring in a uniform nematic media. The director orientations and the defect textures at
close contact edges and faces are depicted for (a) �χ = 0◦ and D = 2.2R, (b) �χ = 36◦ and D = 2.0R, (c) �χ = 36◦ and D = 2.4R,
(d) �χ = 0◦ and D = 2.1R, (e) �χ = 36◦ and D = 2.0R, and (f) �χ = 36◦ and D = 2.25R. The director field is exhibited in 2D planes
that include the pentagonal TP centers and the far-field director alignment. Panels (g)–(i) are the effective potential energies of the parallel
configurations (

⊙⊙
) that are mentioned earlier in Fig. 4(g). The energies quantitatively explain the relation between the particle interactions

and the defect rearrangement. Panel (g) is the effective potential energy used for investigating the configurations depicted in (a) and (d), (h)
is the effective potential energy used for studying the configurations shown in (b) and (e), and (i) is the effective potential energy used for
studying the configurations shown in (c) and (f). The scalar order parameter has been specified for lower than 0.5Seq.

large separations, the pentagonal TPs attract each other in the
antiparallel (

⊙⊗
) configurations and repel each other in the

parallel (
⊙⊙

) configurations [see Fig. 4(g)]. Independent
of the colloidal interaction types, the free energy potentials
have been evaluated by long-range dipolar potential and in-
dicate a fairly good agreement. In parallel configurations,
symmetry breaking, which will be discussed in detail later,
takes place at small distances so that the repulsive interactions
transform into attractive interactions. The configurations that
are shown in Figs. 4(e) and 4(f) are energetically comparable
when parallel configurations can overcome the energy barrier,
∼0.45 × 104kBT . In configurations Figs. 4(a) and 4(c), sym-
metry breaking is observed for separations that are smaller
than those depicted in Fig. 4(e).

Figure 5 displays the defect rearrangements in parallel
(
⊙⊙

) configurations in the case of close contact interac-
tions. Generally, these rearrangements usually change the
nature of the interactions at short distances. In Figs. 5(a)–5(c),
the splay deformations are the main contribution in the elastic
distortions when the PTPs approach each other. Indeed, the
director around the particles tends to maintain its inherited
symmetry from the large separations. In these situations, the

disclination line defects are observed at large bases, and the
total free energies are observed to display a repulsive behavior
[Figs. 5(g)–5(i)]. We further manually break the director sym-
metry in the numerical optimizations by randomly initializing
the director field around the particles [44]. As shown in
Figs. 5(d) and 5(e), the bend deformation is observed to be-
come the dominating effect of splay distortion, and the defect
loops are rearranged on the lateral faces between particles.
Figures 5(g) and 5(h) show that the particles attract each other
at small separations. Furthermore, an energy level crossing is
observed by the superposition of both repulsive and attractive
free energy branches. Experimentally, we can switch between
repulsive and attractive states by applying laser tweezers that
rearrange the disclinations at the edges [32]. In Fig. 5(i) there
are meta-stable states at approximately D = 2.31R for which
the total energy differences between the Figs. 5(c) and 5(f)
configurations are observed to be relatively small and on the
order of 10kBT . Thus, the transition between the Figs. 5(c)
and 5(f) configurations is not continuous but may occur with
the slightest thermal fluctuation.

The symmetry breaking causes the configuration in
Fig. 4(e) to be an energetically favorable scenario and may
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ΔF(units of 104kBT ) (b)

(c)

FIG. 6. (a) A nonhorizontal schematic of the pentagonal TPs
with the parallel configuration investigated by varying φ1 and φ2.
The value of the angles are chosen so that the relation φ1 + φ2 � 2α

is satisfied when α (=15◦) is the tilted angle of the lateral faces.
For a case in which φ1 + φ2 = 2α, the side faces of the particles
are completely in contact with each other. Here we focus just on the
0 � φ1 � α and φ1 � φ2 � 2α − φ1 region and give the 0 � φ2 � α

and φ2 � φ1 � 2α − φ2 region the same physical treatment. Both
triangle regions exhibit mirror symmetry with respect to the φ1 = φ2

line. The particle-particle separation is D = 1.8R in the case for
which φ1 = φ2 = 0◦. (b) The effective potential energy profile in
terms of the oblique orientation of particles, φ1 and φ2. (c) The
entangled disclination line defect in the case for which φ1 = φ2 =
12.5◦. The scalar order parameter has been specified for lower than
0.5Seq.

cause it to display the reduction in elastic interaction at the
cost of more spatial deformations. In that particular case,
we are interested in studying those nonhorizontal particle
orientations in configuration Fig. 4(e) at close contact that can
decrease the bending elastic distortions between the adjacent
lateral faces and slightly increase the bending energy around
the bases of the particles. As shown in Fig. 6(a), the large
bases show nonzero angles with respect to the horizontal
plane as 0 � φ1 � α and φ1 � φ2 � 2α − φ1. The effective
energy profile in Fig. 6(b) clearly not only exhibits that the
configuration shown in Fig. 4(f) is not the ground state at
close contact separation but also that the energy is low for
each oblique orientation of particles (φ1, φ2 �= 0). According
to the energy profile, equilibrium configuration occurs at φ1 =
φ2 � 12.5◦, which causes an entangled defect texture between
particles. As shown in Fig. 6(c), two pentagonal disclination
line defects are observed to surround the particles near the
large bases with two similar side loops and a rectangular frame
between close contact lateral faces.

Figure 7 shows a potential barrier for a collection of par-
allel configurations from side-to-side (

⊙⊙
) to base-to-base

(
⊙

/
⊙

). Here we have manually moved the left particle
using some translations and rotations [see Figs. 7(b)–7(g)].
Numerically, the initial director profile of each spatial particle-
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FIG. 7. Interaction of two identical pentagonal TPs at θ = 0◦

with homeotropic anchoring for a collection of configurations from
side-to-side

⊙ ⊙
to base-to-base

⊙
/
⊙

. Each configuration is
specified by a difference in the orientation of the particles around
their pyramid axes, �χ , the distance between their pyramid axes,
D⊥, and the distance between their large bases, D‖. (a) �χ =
36◦, D⊥ = 1.85R, and D‖ = 0, (b) �χ = 36◦, D⊥ = 1.858R, and
D‖ = 0.2R, (c) �χ = 36◦, D⊥ = 1.806R, and D‖ = 0.4R, (d)
�χ = 36◦, D⊥ = 1.211R, and D‖ = 0.4R, (e) �χ = 36◦, D⊥ =
0.606R, and D‖ = 0.4R, (f) �χ = 36◦, D⊥ = 0, and D‖ = 0.4R,
(g) �χ = 18◦, D⊥ = 0, and D‖ = 0.4R and (h) �χ = 0◦, D⊥ = 0,
and D‖ = 0.31R. (i) The potential barrier between the two minima
configurations, (a) and (h). The scalar order parameter has been
specified for lower than 0.5Seq.

particle configuration is chosen using the equilibrium director
arrangement of the final closest separation. The potential
barrier height ensures that the configurations that are depicted
in Figs. 7(a) and 7(h) exhibit energetically steady states in the
short-range elastic interactions and that the transition energy
is much larger as compared to the system thermal fluctuations.
Therefore, in the case of the spatial distribution of each
parallel configuration, the final particle-particle arrangement
leads to one of the previously mentioned steady states. At the
early stages of this path the jumped part of the line defect
in Fig. 7(a) leaves the small base and slowly goes back to
the large base that causes an increase in free energy. The
short-range elastic interactions also induce torques on the
pentagonal TPs at �χ = 0◦ and cause their defects to become
similar.

In an attempt to understand the complex 2D crystalline and
quasicrystalline self-assemblies by the pentagonal truncated
pyramid blocks, we investigated the bent and branch self-
tiling patterns when a pentagonal TP closes to an already
assembled structure in a side-to-side fashion. Figures 8(a)
and 8(b) represent the formations of the bent and branch
patterns, respectively. As shown in Fig. 8(c), both patterns
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FIG. 8. Interaction of a pentagonal TP with two already-
conjoined pentagonal TPs with an equilibrium distance of OO ′′ =
1.8R, for the bent and branch orientations, (a) ̂O ′′OO ′ = 144◦ and
(b) ̂O ′′OO ′ = 72◦. The identical pentagonal TPs are distributed at
θ = 0◦ with homeotropic anchoring. (c) The effective potential en-
ergy in terms of OO ′′(= D) separations. The scalar order parameter
has been specified for lower than 0.5Seq.

exhibit nearly similar behavior at large and close contact
separations. However, the branch patterns provide more favor-
able conditions for self-tiling at intermediate distances with
∼1.67 × 103kBT energy differences. Such side-to-side long
and short elastic interactions of the pentagonal TP blocks can

experimentally form beautiful and known colloidal structures
such as ring, diamond, and Penrose tiling [31].

VI. SUMMARY

We have demonstrated that an isolated pentagonal trun-
cated pyramid with homeotropic anchoring is always perpen-
dicular to the uniform director orientation and that a closed
pentagonal line defect having a strength of −1/2 surrounds
the lateral face near the large base. The pentagonal TPs attract
each other in the parallel configurations (

⊙
/
⊙

) and repel
each other in the antiparallel (

⊙
/
⊗

or
⊗

/
⊙

) configu-
rations in the base-to-base arrangements. In the side-to-side
arrangements, the pentagonal TPs attract each other in the
antiparallel configurations (

⊙⊗
) and repel each other in

the parallel (
⊙⊙

) configurations. In parallel configurations
with small separations, the repulsive interactions are observed
to transform into attractive interactions due to symmetry
breaking. In this state, the nonhorizontal particle orientations
at close contact distances decrease the bending elastic distor-
tions between the adjacent lateral faces. We have depicted that
the side-to-side (

⊙⊙
) and base-to-base (

⊙
/
⊙

) configu-
rations are energetically steady and that they do not easily
transform into each other. Finally we have compared the
ability of bent and branch patterns to form complex self-tiling
assemblies using pentagonal truncated pyramid blocks.
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