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We propose a surface energy for conically degenerate anchorings of uniaxial liquid crystal mesogens by
modifying tensorial Nobili-Durand surface energy that is usually employed for fixed anchoring orientations
with preferred polar angles. By minimizing Landau–de Gennes free energy and the proposed surface energy, we
obtain the equilibrium director configuration around a spherical colloid in the uniform nematic liquid crystal.
Our calculations show that the proposed surface energy can cause boojum or/and Saturn-ring defect textures
depending on the equilibrium conic angle. We also study the interactions between two spherical colloids with
the equilibrium conic angle 45◦, where the surface energy provides both boojum and Saturn-ring defects on the
surface of particles. We compare the calculated anisotropic colloidal interactions with experimental observations
[B. Senyuk et al., Nat. Commun. 7, 10659 (2016)]. In agreement with experiment, our results show two stable
angular assemblies in the close particle-particle separations. Also, the long-range elastic interactions are almost
consistent with the hexadecapolar elastic distortion.

DOI: 10.1103/PhysRevE.99.032702

I. INTRODUCTION

Behavior of colloidal particles in a nematic liquid crystal
(NLC) host is controlled not only by the size and shape of
the particles [1–5] but also by the anchoring alignment and
strength of the liquid crystal mesogens on the particle surface
[6–10]. There are a wide range of studies on micro- and
nanospherical colloids with planar or normal anchorings in a
uniform NLC [11–17]. The uniform alignment of the nematic
orientation (i.e., director) gets perturbed by the anchoring on
the surface of the particles, and then spatial discontinuities
of the director field are often formed around the particles as
points and/or lines. These discontinuities, known as topolog-
ical defects, are strongly related to long- and short-range col-
loidal interactions in the NLC host [18].At large distances, the
colloid and its accompanying defect act as a multipole elastic
moment in analogy to those in the electrostatics [10,19–24].
The interaction between the particles can be approximated by
that between the multipole moments. In short particle-particle
distances, on the other hand, we sometimes observe that the
defect textures rearrange at the particle contact faces because
of the symmetry breaking of the director field [6,7]. The
balance between the long- and the short-range interactions
can provide colloidal self-assemblies [2,9]. The anisotropic
elastic interactions between the colloids in the close distances
overcome the Brownian motion and enable regular one- or
two-dimensional stable structures to form [14].

In contrast to the spherical colloids, faceted colloids build
up more complex structures because of the defect line de-
formations at the sharp edges [3,4,25–28]. Although colloids
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with low symmetry open a new route for the colloidal self-
assembly with specific media elastic distortions, it has shown
that the spherical colloids with various anchoring alignments
can be still major candidates in scientific and technological
studies on colloids [8–10].

The surface functionalization of the spherical colloids with
different anchoring properties can induce complex elastic
distortions and lead to the surface and the bulk defect tex-
tures simultaneously in the uniform NLC. Such particles that
have specific surface properties are known as Janus colloids
[8]. They can potentially form novel colloidal structures in
comparison to particles with fully planar or normal colloidal
anchorings. Another interesting idea for inducing complex
elastic deformations around the spherical colloids has been
recently studied by Senyuk and his coworkers. They imposed
a conically degenerate boundary condition on the director
at the colloidal surfaces. In the uniform NLC fluid, these
particles induce hexadecapolar director distortions that causes
anisotropic colloidal interactions. Depending on the study
conditions, the colloidal interactions can spatially form two-
dimensional regular crystals with rhombic unit cells or any
possible three-dimensional lattices [9]. A particle with the
hexadecapolar symmetry behaves as a 16-pole moment in
analogy to those in the electrostatics.A specific distribution
of charges on a spherical particle corresponds to a filled g
orbital of the outermost occupied electron shells of chemical
elements [9,10].

The colloids immersed in the NLC is described by appro-
priate surface energies that satisfy the nematic mesogens ori-
entations on the surface of the particles [29–33]. The normal
and planar anchoring surfaces have been usually employed
in studying the nematic colloids. To investigate the colloids
with complex anchorings such as the conically degenerated
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anchoring theoretically, we need new proper surface energies.
It is quite useful to describe the surface energies with a ten-
sorial form, because it can describe the director field around
the defects without considering singularities [30,31,33]. To
consider a nondegenerate and fixed anchoring condition, a
tensorial quadratic surface energy was introduced by Nobili
and Durand (ND) [30]. Another tensorial surface energy has
been proposed by Sluckin and Poniewierski (SP) for preferred
orientations [31]. Fournier and Galatola (FG) also proposed a
smart surface energy for the degenerate planar anchoring [33].

In this study, we modify the ND surface energy to describe
the conically degenerate anchorings of the uniaxial NLC. We
mathematically compare the modified ND and the SP surface
energy behaviors around the equilibrium conic angle by eval-
uating their reduced nontensorial energies. By minimizing the
Landau–de Gennes free energy with the surface energies, we
consider the director arrangement on a spherical colloid in the
uniform NLC for different equilibrium conic angles. We also
explain interactions between two colloids with the modified
ND surface energy with the equilibrium conic angle 45◦ and
compare the results with experimental observations [9].

II. SURFACE ENERGY

To describe a nematic fluid, we use a traceless and sym-
metric tensor order parameter, Qi j . In a uniaxial nematic
fluid, it is given as Qi j (�r) = S(�r){3n̂i(�r)n̂ j (�r) − δi j}/2, where
S is the scalar order parameter and n̂ is the unit vector
along the director orientation. The anchoring energy of the
NLC molecules on the colloid surface is usually given as
FS = ∫

∂�
fSdS , in which

∫
∂�

dS denotes the integral over the
colloid surfaces and fS is a function of Qi j . Here the anchoring
strength W appears as a coefficient in the surface energy
density. In this study, the surface scalar order parameter is
assumed to be the same with that in the bulk, Sb (see below).
A degenerate conical anchoring can potentially include all
anchoring situations from the normal to the degenerate planar
anchorings, depending on the equilibrium conic angle, ψe.

Sluckin and Poniewierski (SP) have proposed a general
form of the surface energy as

f SP
S = c1ν̂iQi j ν̂ j + c2Qi jQji + c3ν̂iQikQk j ν̂ j + c4(νiQi jν j )

2,

(1)
where ν̂ is the unit normal vector of the surface, and c1, c2, c3,
and c4 are material constants [31]. The indices (i, j, k) refer to
Cartesian coordinates, and Einstein summation convention is
assumed. Here we retain only the first and the last terms and
ignore the others. In this specific case, the SP surface energy
is rewritten as

f̃ SP
S = W {ν̂iQi j ν̂ j − Sb P2(cos ψe)}2, (2)

where P2(x) is the second-order Legendre polynomial func-
tion of x. It can describe the conically degenerate anchoring
of the uniaxial nematic liquid crystal. This SP surface energy
density reduces to a nontensorial conical anchoring energy as

f̃ SP
S = W

(
3Sb

2

)2

sin2(ψ + ψe) sin2(ψ − ψe), (3)

where n̂ · ν̂ = cos ψ and n̂e · ν̂ = cos ψe (see Fig. 1). This
nontensorial form was also given by Ramdane et al. [32].

FIG. 1. (a) A schematic picture of the normal unit vector ν̂ and
nematic director orientation n̂ on the local surface. n̂e is the equilib-
rium conical orientation. (b) A local right-handed coordinate system
to characterize equilibrium conical orientation, n̂e. It is defined by the
three unit vectors, ê(1), ê(2) and ν̂[=ê(1) × ê(2)]. ψe is the equilibrium
conic angle with respect to the normal unit vector [9].

Around its minimum, ψ = ψe, it is mathematically approx-
imated as

f̃ SP
S � W (3Sb/2)2{sin2(2ψe)(ψ−ψe)2+sin(4ψe)(ψ−ψe)3

+ (7 cos(4ψe) − 1)(ψ − ψe)4 + · · · }. (4)

In this Taylor expansion, the coefficient of the quadratic term,
which evaluates the effective anchoring strength, is given by
W (3Sb/2)2 sin2(2ψe). This indicates that the effective anchor-
ing strength depends on ψe and, in particular, vanishes for the
normal (ψe = 0◦) and the fully planar (ψe = 90◦) anchoring
conditions. When ψe = 0◦ and ψe = 90◦, the fourth order
term becomes dominant.

To resolve this difficulty, we propose another surface en-
ergy in a tensorial form by modifying the ND surface energy
scheme [30]. It is given by

f mND
S = W

2

(
Qi j − Qe

i j

)(
Qji − Qe

ji

)
. (5)

In this modified Nobil-Durand (mND) model, as shown in
Fig. 1(a), Qe

i j = Sb(3n̂e
i n̂e

j − δi j )/2 is locally determined by
the equilibrium conical orientation, n̂e, on the surface. The
equilibrium conical orientation can freely rotate azimuthally
around the normal unit vector, ν̂. As shown in Fig. 1(b), the
equilibrium conical orientation is defined by

n̂e = ν̂ cos ψe + ê(2) sin ψe, (6)

where ê(2) = ν̂ × ê(1). ê(1) is a unit vector perpendicular to the
plane containing n̂ and ν̂. In order to preserve the nematic
symmetry, it is given by ê(1) = (û × ν̂)/|û × ν̂|, where û is
given by û = n̂ when n̂ · ν̂ � 0 or û = −n̂ otherwise. To avoid
a singularity in obtaining ê(1) when ν̂ × n̂ = 0 in numerical
minimizations, we add random noises in the initial director
so that ν̂ × n̂ �= 0. In contrast to the original quadratic ND
surface energy, in which the equilibrium nematic tensor Qe

is fixed, the mND surface energy is nonquadratic potential
because the equilibrium tensor depends on the local tensor.

In the director notation, the mND surface density reduces
to the Rapini-Papoular (RP) surface density [29] as

f RP
S = W

(
3Sb

2

)2

{1 − (n̂ · n̂e)2} = W

(
3Sb

2

)2

sin2(ψ − ψe),

(7)
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FIG. 2. Plots of the modified Nobili-Durand and Sluckin-
Poniewierski surface energies for the generate anchorings (a) ψe =
0◦ (normal), (b) ψe = 20◦ and 70◦, (c) ψe = 45◦, and (d) ψe = 90◦

(planar). In (d), the Fournier-Galatola surface energy is also shown.

where n̂ · n̂e = cos(ψ − ψe). This form has been used to
study the nematic droplets with the conical anchoring [34].
The RP surface anchoring behaves around its minimum
as f RP

S � W (3Sb/2)2[(ψ − ψe)2 − (ψ − ψe)4/3 + · · · ].
Around the minimum, the anchoring strength is effectively
given as W (3Sb/2)2, which is independent of ψe, in contrast
to the SP surface energy. Equation (5) is applicable for any
conic angles, 0◦ < ψe � 90◦. For ψe = 0◦, it describes the
standard ND approach for the perpendicular anchoring as
Qe

i j = Sb(3ν̂iν̂ j − δi j )/2. On the other hand, it gives the

degenerate planar anchoring as Qe
i j = Sb[3ê(2)

i ê(2)
j − δi j]/2

when ψe = 90◦.
Fournier and Galatola [33] also proposed another surface

energy with the degenerate planar anchoring in the Landau–de
Gennes form. Depending on the anchoring strength, W , the
surface energy enforces the nematic mesogens to lie down on
the surface along their projections. The surface energy density
can be expressed as

f FG
S = W (Q̃i j − Q̃⊥

i j )(Q̃ ji − Q̃⊥
ji ), (8)

where Q̃i j = (3Sb/2)n̂in̂ j and Q̃⊥
i j = (δik − ν̂iν̂k )Q̃kl (δl j −

ν̂l ν̂ j ) are uniaxial parallel and projection tensors, respectively.
The FG surface energy density is simplified with ψ as

f FG
S = W

(
3Sb

2

)2

(1 + sin2 ψ ) sin2

(
ψ − π

2

)
· (9)

For a better insight, we compare the mND surface energy
density [Eq. (7)] with the SP surface energy density [Eq. (3)]
at different equilibrium conic angles, ψe. As shown in Fig. 2,
the mND surface anchoring is more concave around ψ = ψe

in comparison with the SP surface anchoring. In Figs. 2(b)
and 2(c), the mND surface anchoring has cusps ψ = 0◦
and 90◦, where the derivative of the energy changes discon-
tinuously. Both surface anchorings show the good agreement
with each other when ψe = 45◦. Also we compared the FG

surface energy density [Eq. (9)] with the mND and SP surface
energy densities at ψe = 90◦. Figure 2(d) displays that the FG
surface anchoring has a steeper slope around the minimum for
the same anchoring strength, W .

III. NUMERICAL METHOD

In order to obtain the director field in the whole system, we
minimize the total free energy F = FLdG + FS numerically.
FLdG is the Landau–de Gennes free energy of the bulk NLC
and is given in terms of the tensor order parameter and its
spatial derivatives as

FLdG =
∫

�

dV
(

a0� T

2
Qi jQji − B

3
Qi jQjkQki

+ C

4
(Qi jQji )

2 + L1

2
∂kQi j∂kQi j

)
, (10)

where
∫
�

dV is the integral over the volume occupied
by the nematic liquid crystal in the cell [35]. The first
three terms describe the isotropic-nematic phase transition.
The coefficients a0, B, and C are positive and material-
dependent parameters, and � T = T − T ∗, where T ∗ is
the nematic supercooling temperature. The bulk scalar or-
der parameter in the uniform nematic phase is given by
Sb = (B/6C)(1 +

√
1 − 24a0� T C/B2). The last term is

the contribution of elastic distortions in one-constant ap-
proximation. L1 is its coefficient. With L1 and Sb, the
Frank elastic moduli are calculated as Ksplay = Ktwist =
Kbend = 9L1S2

b/2. We use the parameters of nematic liq-
uid crystal 5CB (a0 = 0.087 × 106 J/m3 K, T ∗ = 307.15 K,
T = 305.17 K, B = 2.12 × 106 J/m3, C = 1.73 × 106 J/m3,
L1 = 4 × 10−11 J/m) [21,36]. The anchoring strength is as-
sumed to be sufficiently large as W = 10−2 J/m2.

We study identical spherical colloids (R = 0.5 μm) in
a cubic cell filled by the NLC (Lx = Ly = Lz = 20R). The
director orientations on the cell walls are set along the z axis,
n̂0 = (0, 0, 1). The center of particles are spatially placed in
the middle of cell and are restricted to the plane y = Ly/2.
Numerically a finite-element method [17] is employed to
minimize the total free energy (F = FLdG + FS). Using an
automatic mesh generator Gmsh [37], the calculation domain
decomposes into tetrahedral elements. The tensor order pa-
rameter elements are linearly interpolated within each mesh
element. The validity of the linear interpolation depends on
the order parameter deviations within each element, which
is controlled by the mesh size. The Delaunay triangulation-
tetrahedralization algorithm supplies the element size on the
particle surfaces with Le = 0.01R, and those on the cell
boundaries with Le = R. A conjugate gradient method [38]
is used to minimize the free energy and the iteration steps
are stopped when the free-energy difference between two
sequential steps drops below 10−10.

IV. NUMERICAL RESULTS

A. Director field around a single particle

Figure 3 shows the director orientations and defect struc-
tures around a spherical colloid with the degenerate conical
anchoring on the surface for various values of the equilibrium
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FIG. 3. Director orientations and defect structures around a spherical colloid in a uniform nematic media. The structures in (a)–(e) are
obtained with the modified Nobili-Durand surface anchoring for various values of the equilibrium conic angle, (a) ψe = 0◦, (b) ψe = 20◦,
(c) ψe = 45◦, (d) ψe = 70◦, and (e) ψe = 90◦. The pattern in (f) is related to the Fournier-Galatola surface anchoring calculation. Those in (g)–
(k) are determined by the Sluckin-Poniewierski surface anchoring for various values of the equilibrium conic angle, (g) ψe = 0◦, (h) ψe = 20◦,
(i) ψe = 45◦, (j) ψe = 70◦, and (k) ψe = 90◦. The anchoring constant is the same amount in all configurations (W = 10−2 J/m2). The regions,
in which the scalar order parameter is lower than 0.5Sb, are indicated by the red surfaces. They represent the defects of the director field. (l) A
three-dimensional map plot of the x component of director, n̂x , on virtual spherical surface with radius r = 1.2R. The mND surface anchoring
with ψe = 45◦ is employed. The maximum of n̂x is 0.2.

conic angle, ψe, in a uniform nematic media. The director
orientations in Figs. 3(a)–3(e) are obtained with the mND
surface energy [Eq. (5)]. The red tubes represent the topo-
logical defects of the director field. They are defined by the
regions, in which the scalar order parameter is lower than
0.5Sb. Figure 3(a) refers to the normal anchoring (ψe = 0◦)
which induces a Saturn-ring defect with the topological
strength s = −1/2. An increase in ψe (�45◦) shrinks the
Saturn-ring defect loop. Finally the Saturn ring disappears
from the bulk and a surface defect loop is formed. A further
increase in ψe (�45◦) leads to two surface point defects
(boojums), which appear gradually at the poles in the nematic
direction. Figure 3(e) represents the two boojums with the
topological strength s = +1 for the perfect planar anchoring
(ψe = 90◦). The director structure in Fig. 3(f) is obtained with
the FG surface anchoring [Eq. (8)]. We confirmed that the
mND surface energy gives the same result as that with the FG
when ψe = 90◦ [see Figs. 3(e) and 3(f)]. For ψe = 45◦, both
boojums and Saturn-ring defects are observed. This director
and defect structure are consistent with those in the previous
study with the experimental realizations [9]. It was claimed
that this structure has a hexadecapole symmetry.

Figures 3(g)–3(k) show the director patterns with the SP
surface energy [Eq. (3)]. Here the effective anchoring strength
depends on ψe, contrary to the mND surface anchoring. Al-
though the SP surface anchoring shows nearly similar results
with those with the mND surface energy, some qualitative
differences between them are found. In ψe = 0◦, the Saturn
ring calculated with the SP surface energy is closer to the
surface than that with the mND surface energy. In ψe = 70◦,
the director deviations from the preferred orientation on the
surface are not bound to the equator. In ψe = 90◦, the di-
rector cannot lie very well on the surface. We show the
n̂ profile in x direction around the particle with the mND
anchoring with ψe = 45◦ at the radius r = 1.2R in Fig. 3(l).
The director distortions at ψe = 45◦ indicate a hexadecapolar
symmetry (16-pole moment) similar with the filled g orbital of

the outermost occupied electron shells of chemical elements
[9,10].

In order to evaluate the local director alignment on the
surface with respect to the equilibrium conical orientation,
we introduce anchoring error quantity as eA = |(n̂ · ν̂)2 −
cos2 ψe|. It gives the efficiency of the surface energies in
different equilibrium conic angles. Figure 4 shows eA patterns
on the particle surface for the mND [Figs. 4(a)–4(e)], FG
[Fig. 4(f)], and SP [Figs. 4(g)–4(k)] surface energies. Gen-
erally, the anchoring errors of the mND surface energy in
Figs. 4(a)–4(e) are smaller than those of the SP surface energy
in Figs. 4(g)–4(k). For ψe = 90◦, the mND surface anchoring
gives almost the same configuration as that of the FG surface
anchoring [see Figs. 4(e) and 4(f)]. The anchoring error of
the SP energy becomes largest when ψe = 45◦. With a large
anchoring strength, W = 1 J/m2 and ψe = 45◦ [see Fig. 4(l)],
the error can be diminished, but it is still larger than that of the
mND energy in Fig. 4(c).

B. Interparticle interactions for ψe = 45◦

Next we investigate interactions between the two spherical
colloids in the uniform nematic host. The colloids have the
conically degenerate anchoring on their surfaces with the
equilibrium conic angle ψe = 45◦. This setup aims at ex-
plaining recent experimental observations with similar con-
ditions [9]. Here we employ only the mND surface energy
to describe the conically degenerate anchoring. We should
note that although the mND surface energy provides stronger
anchoring on the surfaces, the mND and SP surface energies
approximately exhibit almost the same behaviors when ψe =
45◦. The study on colloidal interactions with the SP energy
will remain open.

In Fig. 5, we plot the interaction between the two particles
as functions of the interparticle distance, D, and the angle
between the line joining the center of particles and the far-
field director, θ . To clarify the nature of the short-range
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FIG. 4. Anchoring error patterns, eA, on the colloid surface. The patterns in (a)–(e) are obtained with the mND surface energy for various
values of the equilibrium conic angle, (a) ψe = 0◦, (b) ψe = 20◦, (c) ψe = 45◦, (d) ψe = 70◦, and (e) ψe = 90◦. The pattern in (f) is related to
the FG surface energy calculation. The patterns in (g)–(k) are determined by the SP surface energy for (g) ψe = 0◦, (h) ψe = 20◦, (i) ψe = 45◦,
(j) ψe = 70◦, and (k) ψe = 90◦. The anchoring constants are the same in (a)–(k) configurations (W = 10−2 J/m2). The pattern in (l) is obtained
by the SP surface energy with W = 1 J/m2 and ψe = 45◦. The maximum values of eA are indicated above the snapshots.
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FIG. 5. Colloidal interactions in a uniform nematic media with the conical anchoring, ψe = 45◦. (a) The angular dependence of the effective
potential �F for various fixed short and large distances, where �F ≡ F − F0 and F0 = F (D = 4R) = 1.323 × 105kBT . The inset plot
displays a schematic of spatial arrangement of spherical particles with respect to the far-field director orientation, n̂0. [(b)–(e)] The equilibrium
profiles of the director field and scalar order parameter in close contacts for (b) θ = 0◦ and D/R = 2.02, (c) θ = 20◦ and D/R = 2.10,
(d) θ = 70◦ and D/R = 2.10, and (e) θ = 90◦ and D/R = 2.02. The regions, in which the scalar order parameter is lower than 0.5Sb, are
indicated by the red surfaces as defects. (f) The colloidal potential energy in term of the center-center separation D in several fixed spatial
arrangements, θ = 0◦, 20◦, 45◦, 70◦, and 90◦. (g) The log-log plots of the potential energies in (f). They are compared with the potential
of hexadecapolar elastic distortion, (D/R)−9. By fitting a power-law function c(D/R)−α to the effective potentials, we get α = 9.31 ± 0.28,
8.97 ± 0.41, 9.06 ± 0.59, 8.76 ± 0.60, and 8.23 ± 0.49 for θ = 0◦, 20◦, 45◦, 70◦, and 90◦, respectively.
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interactions, the director orientation and defect textures are
studied at close contacts. We investigate the long-range inter-
action by interpolating it with a power law function.

Figure 5(a) shows that the particles undergo strong torques
at the close contact separations. The effective potential en-
ergy explains that the colloidal particles can physically join
together at θ � 20◦ or θ � 70◦ and form two independent col-
loidal arrangements with respect to the far director orientation.
The effective potential height is so larger than the thermal
energy kBT that the equilibrium arrangements are spatially
stable. They can form regular rhombic lattice of colloids
when the particles confined to a two-dimensional page parallel
to the director. In agreement with the experiment [9], we can
decompose the whole particle surface into four attractive re-
gions with different latitudes (θ ≈ 20◦, 70◦, 110◦, and 160◦).
We also show the director and the defect patterns around the
particles in close contact interparticle arrangements as shown
in Figs. 5(b)–5(e).

In Fig. 5(f), the effective potential obviously shows that the
colloidal particles attract each other at θ = 20◦ and 70◦ and re-
pel each other at θ = 0◦, θ = 45◦, and 90◦. In case of θ = 0◦,
the repulsive particle-particle interaction in the long dis-
tances turns to attractive in the short distances (D/R � 2.2).
This behavior is due to the symmetry breaking of the di-
rector field. At the contact faces, the boojum defects are
rearranged [see Fig. 5(b)]. Similar nonmonotonic interactions
were observed in the colloids with the pure planar anchoring
[6,17]. Around the particles with the normal anchoring, in the
same way, we expected that the induced Saturn-ring defects
rearrange at θ = 90◦ and the close contact regimes, and this
rearrangement of the defects gives rise to the bonding of the
particles [7,14]. However, Fig. 5(e) shows that the closed
surface disclination loops around the particles do not display
such rearrangements in comparison with the Saturn-ring de-
fects when the particles touch each other. Thus the short-
range interactions between particles with the conical anchor-
ing is more complex than those with the planar and normal
anchorings.

To study the distance dependency of the colloidal interac-
tions with conically anchoring at large separations, we com-
pare the calculated effective colloidal potentials with those of
two hexadecapolar moments at different spacial arrangements
in Fig. 5(g) (see Appendix). It has been experimentally shown
that the particle and the accompanying defects result in the
anisotropic long-range interactions with the hexadecapole
symmetry [9]. We fitted the effective potentials by the power
function in all arrangements. Our results almost agree with the
hexadecapolar elastic distortion as �F ∝ (D/R)−9, although
there remain some deviations between them.

V. SUMMARY

By modifying Nobili-Durand surface energy, we developed
a surface energy in a form of the tensorial order parameter for
describing the conically degenerate anchoring. It is compared
with another surface energy, which was proposed by Sluckin
and Poniewierski. We investigated the defect textures and the
director orientations around a spherical colloid in the uniform
nematic media by minimizing the Landau–de Gennes free
energy with these surface energies at different equilibrium

conic angles. Our calculations indicate that the local director
orientation on the surface in the modified Nobili-Durand
energy shows more adaptations with the expected equilibrium
conic angle, in comparison to the Sluckin-Poniewierski sur-
face energy.

Using the modified Nobili-Durand surface energy, we con-
sidered the interaction between two colloids with the equilib-
rium conic angle, ψe = 45◦. In agreement with experiments,
the results show that there are two stable angular assemblies
around θ ≈ 20◦ and 70◦ with respect to the far-field director
orientation.
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APPENDIX: INTERACTION BETWEEN
POINT HEXADECAPOLES

We consider the interaction between the two colloids with
the conically degenerated anchoring at large distances. At the
large distance, the spherical colloid particle can be regarded
as a point with the hexadecapole-moment density,

Hi jkl (�r) = Hi jkl
0 [δ(�r) + δ(�r − �D)], (A1)

where Hi jkl
0 is the magnitude of the moment density tensor.

The contribution of this moment to the free energy of the
nematic liquid crystal host containing the particle is given by
[20,39,40]

FH = 4πK
∫

dV[(∇ · n̂)(n̂ · ∇)3(Hi jkl n̂in̂ j n̂k n̂l )]. (A2)

Assuming n̂ = (n̂x, n̂y, 1), where n̂x, n̂y 
 1, one obtain the
total elastic free energy as

Fel = K
∫

dV 1

2
(∇n̂μ)2 + FH . (A3)

Its Euler-Lagrange equation is

∇2n̂μ = −4π∂μ∂3
z Hzzzz· (A4)

From Eqs (A1), (A3), and (A4), we obtain the mutual
interaction energy between the colloids as

U (�D) = 4πK
8!h2

z

|�D|9 P8(cos θ ), (A5)

where hz = Hzzzz
0 and P8(x) is the eighth-order Legendre

polynomial function of x.
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