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 A B S T R A C T

In this paper, we assign a Riemannian manifold to 𝑛-state systems by using a canonical ensemble 
in equilibrium statistical mechanics. We consider discrete states with equal intervals, i.e., we 
assume equal energy intervals between the states of non-interacting particles. Since there are 
many important quantities on a Riemannian manifold, we may define them for 𝑛-state systems. 
We define a distance between different equilibrium statistical states of an 𝑛-state system. We 
also give a lower bound for the mean square error of an unbiased estimator for the temperature 
of an 𝑛-state system.

1. Introduction

Equilibrium statistical mechanics aims to elucidate the physical macroscopic properties (such as number of particles 𝑁 , volume 
𝑉  or energy 𝐸) of a system from the microscopic properties of matter by employing physics theories at classical mechanics, 
electromagnetism, quantum mechanics, or relativity in a probabilistic framework [1].

A particular microscopic configuration specifies a microstate with a certain probability, and a macroscopic state is associated 
with a large number of microstates. The possible microstates of a system are known as the ensemble of states. Depending on the 
system’s thermodynamic condition, there are different ensembles to obtain equilibrium properties of the system. The microcanonical 
ensemble has an equal probability for each microstate which clarifies a set of microstates with the same macrostate energy. The 
canonical ensemble is specified by a set of microstates with the same number of particles and volume. In this condition, the system 
is in contact with a heat bath and can exchange its energy. The grand canonical ensemble is related to an open system that can 
exchange energy and particles with its environment. It is in fact a canonical subensemble with different particle numbers [2]. One 
may also see [3,4] to study the quantum mechanical canonical ensemble.

To study chemo-physical phenomena with mathematical models, one can employ some tools of different branches of mathe-
matics [5–7]. Theory of dynamical systems [8], catastrophe theory [9], Shannon information theory [10,11], Fisher information 
theory [12,13], graph theory [14,15] and geometry [16,17] are some branches of mathematics that are applied to modelize 
chemi-physical phenomena.

The study of differential geometry in statistical mechanics and thermodynamics began with the seminal works of [18,19]. Since 
then, numerous papers have explored the connection between geometric structure and critical phenomena in these models. Building 
on techniques from [20], Tsallis [21] pioneered the study of deformed canonical ensembles. Further details can be found in the 
book [22]. 

Here we attempt to apply information geometry techniques in modeling 𝑛-state systems [20]. We assign a Riemannian manifold 
to any 𝑛-state system and develop the necessary mathematical tools and concepts. To this end, we define a typical distance between 
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two equilibrium temperatures of 𝑛-state systems using the Riemannian metric on the corresponding manifold. We have also specified 
a lower bound for the error estimation of the equilibrium temperature in 𝑛-state systems. This investigation can develop connections 
between geometry and information theory.

In Section 2, we review 𝑛-state systems using statistical mechanics. In Section 3, statistical manifolds are introduced. In Section 4, 
we assign a Riemannian manifold to an 𝑛-state system. In Section 5, we give an uncertainty inequality by presenting a lower bound 
for the error estimation of the equilibrium temperature. Section 6 is a summary and discussion.

2. 𝒏-state systems and Boltzmann distribution

In this section, we review an 𝑛-state system using the canonical ensemble approach.  One should note that, there are some useful 
articles addressing a similar problem. In [23], the information geometry of the quantum mechanic oscillator is studied. However, 
that study is done in the continuous approximation while the current manuscript is in a discrete energy space. The difficulties in 
creating a temperature estimator are studied in [24]. However, unlike our current manuscript, [24] assumes a distribution for 𝑇 .

The probability of finding the system in a microstate 𝑘 with energy 𝜖𝑘 in thermal equilibrium with the environment is given by 

𝑝𝑘 =
𝑒−𝛽𝜖𝑘
𝑍

, (2.1)

where 𝛽 = 1∕𝑘𝐵𝑇 , 𝑇  is the temperature and 𝑘𝐵 is the Boltzmann constant. Also, 𝑒−𝛽𝜖𝑘  is called a Boltzmann factor. Since 𝑝𝑘 has a 
normal probability distribution, then 

𝑍 =
∑

𝑘
𝑒−𝛽𝜖𝑘 (2.2)

is known as the partition function. For an 𝑛-state system with equal energy intervals between the states of non-interacting particles, 
the partition function is given by 

𝑍 =
𝑛
∑

𝑘=1
𝑒−(𝑘−1)𝛽𝛥

= 1 + 𝑒−𝛽𝛥 + 𝑒−2𝛽𝛥 +⋯ + 𝑒−(𝑛−1)𝛽𝛥
, (2.3)

where 𝜖1 = 0 and 𝜖𝑘 − 𝜖𝑘−1 = 𝛥 (𝑘 = 2, 3,… , 𝑛). For 𝛽𝛥 ≪ 1 and using the sum of the first 𝑛 terms of a geometric series, we can 
obtain the partition function as 

𝑍 = 1 − 𝑒−𝑛𝛽𝛥

1 − 𝑒−𝛽𝛥
. (2.4)

We can consider the 𝑛-state system for a variety of physical problems, such as the binary states with two-level states (𝑛 = 2) and 
the infinity-level states for the ideal quantum harmonic oscillators [25].

3. Statistical manifold

Let 𝑆 = {𝑝𝜉}𝜉∈𝛩 be a family of probability distributions on 𝛺 = {𝑥1, 𝑥2,… , 𝑥𝑛}. In other words, for any 𝜉 ∈ 𝛩, 𝑝𝜉 ∶ 𝛺 → [0, 1] is 
a probability distribution function and

𝑆 = {𝑝𝜉 = 𝑝(𝑥, 𝜉) ∶ 𝜉 = (𝜉1, 𝜉2,… , 𝜉𝑚) ∈ 𝛩}.

Note that, the mapping 𝜉 ⟼ 𝑝𝜉 is an injection. It is also assumed that 𝑝𝜉 (𝜉 = (𝜉1, 𝜉2,… , 𝜉𝑚)) is smooth with respect to the components 
𝜉𝑖 (𝑖 = 1, 2,… , 𝑚), i.e., the function 𝜉 ⟼ 𝑝𝜉 is 𝐶∞. Let also 𝛩 ⊂ R𝑚 be an open set. So, all the terms of the form 𝜕𝑝𝜉𝜕𝜉𝑖  and 

𝜕2𝑝𝜉
𝜕𝜉𝑖𝜕𝜉𝑗

 are 
well-defined on 𝛩 and we have

𝑛
∑

𝑙=1

𝜕𝑝𝜉
𝜕𝜉𝑖

(𝑥𝑙) =
𝜕
𝜕𝜉𝑖

𝑛
∑

𝑖=1
𝑝𝜉 (𝑥𝑙) =

𝜕
𝜕𝜉𝑖

(1) = 0.

The mapping 𝜙 ∶ 𝑆 → R𝑚 defined by 𝜙(𝑝𝜉 ) = 𝜉 gives a coordinate system 𝜙 = [𝜉𝑖] on 𝑆 which makes it a manifold with one single 
local chart. On the other hand, if 𝜓 ∶ 𝛩 → 𝜓(𝛩) ⊂ R𝑚 is another 𝐶∞-diffeomorphism, then 𝜂 = 𝜓(𝜉) is another coordinate system 
for 𝑆, and indeed 𝑆 = {𝑝𝜓−1(𝜂)}𝜂∈𝜓(𝛩). Based on the previous discussions, 𝑆 is a 𝐶∞-manifold, where each parameterization of 𝑆 is 
indeed a coordinate system. 𝑆 is called a statistical manifold as shown in Fig.  1. Now, a Riemannian metric is defined on 𝑆 = {𝑝𝜉}𝜉 , 
using the Fisher information matrix 𝐺(𝜉) = [𝑔𝑖𝑗 (𝜉)]𝑚×𝑚 (𝜉 ∈ 𝛩) with 

𝑔𝑖𝑗 (𝜉) =
𝑛
∑

𝑙=1
𝑝𝜉 (𝑥𝑙)

𝜕𝑙
𝜕𝜉𝑖

(𝑥𝑙)
𝜕𝑙
𝜕𝜉𝑗

(𝑥𝑙), (3.1)

where 𝑙 = 𝑙𝜉 (𝑥) = log 𝑝𝜉 (𝑥) [20].
The functions 𝑔𝑖𝑗 ∶ 𝛩 → R are 𝐶∞. Note that, using the correspondence 𝜉 ⟼ 𝑝𝜉 , each 𝑔𝑖𝑗 may be considered as a function 

defined on 𝑆. We have:

1. 𝐺(𝜉) is a symmetric matrix, since
∀𝜉 ∈ 𝛩 𝑔 (𝜉) = 𝑔 (𝜉) (𝑖, 𝑗 = 1, 2,… , 𝑚).
𝑖𝑗 𝑗𝑖
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Fig. 1. A schematic of statistical manifold and curves between two points on it.

2. 𝐺(𝜉) is semi positive-definite, since, for every given 𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑚)𝑡 we have:

𝑉 𝑡𝐺(𝜉)𝑉 =
∑

𝑖,𝑗
𝑣𝑖𝑣𝑗𝑔𝑖𝑗 (𝜉) =

𝑛
∑

𝑙=1

( 𝑚
∑

𝑖=1
𝑣𝑖
𝜕𝑙
𝜕𝜉𝑖

(𝑥𝑙)

)2

≥ 0.

Now, the inner product < ⋅, ⋅ > on the tangent space 𝑇𝑆 is defined as follows: 

𝑔𝑖𝑗 =< 𝜕𝑖, 𝜕𝑗 >, (3.2)

where 𝜕𝑖 = 𝜕
𝜕𝜉𝑖
. Clearly, the Riemannian metric 𝑔 =< ⋅, ⋅ > is uniquely determined by (3.2). So, the pair (𝑆, 𝑔) is a Riemannian 

manifold corresponding to the family of distributions 𝑆. One may see a comprehensive discussion on statistical manifolds in [20]. 
In the following, we review some classical concepts which may be used in the sequel.

3.1. Fisher distance

Let 𝑆 = {𝑝𝜉}𝜉∈𝛩 be a statistical manifold. For any 𝐶1-curve 𝛾 ∶ [0, 1] → 𝑆, the length of 𝛾 is given by 

𝐿(𝛾) ∶= ∫

1

0

√

∑

𝑖,𝑗
𝑔𝑖𝑗 𝛾̇𝑖𝛾̇𝑗𝑑𝑡. (3.3)

Let 𝜉, 𝜂 ∈ 𝛩. The set of all 𝐶1-curves 𝛾 ∶ [0, 1] → 𝑆 with 𝛾(0) = 𝑝𝜉 and 𝛾(1) = 𝑝𝜂 is denoted by 𝛥𝜉𝜂 . The Fisher distance between 𝜉
and 𝜂 is defined by 

𝑑𝐹 (𝜉, 𝜂) ∶= inf{𝐿(𝛾) ∶ 𝛾 ∈ 𝛥𝜉𝜂}. (3.4)

Clearly 𝑑𝐹 ∶ 𝛩 × 𝛩 → [0,+∞) induces a metric on 𝑆, i.e.,

1. 𝑑𝐹 (𝜉, 𝜂) ≥ 0 for all 𝜉, 𝜂 ∈ 𝛩, and 𝑑𝐹 (𝜉, 𝜂) = 0 if and only if 𝜉 = 𝜂.
2. 𝑑𝐹 (𝜉, 𝜂) = 𝑑𝐹 (𝜂, 𝜉) for all 𝜉, 𝜂 ∈ 𝛩.
3. 𝑑𝐹 (𝜉, 𝜂) ≤ 𝑑𝐹 (𝜉, 𝜁 ) + 𝑑𝐹 (𝜁, 𝜂) for all 𝜉, 𝜂, 𝜁 ∈ 𝛩.

Formula (3.4) is not suitable for practical and computational aspects, since the infimum is taken over an infinite (even more on an 
uncountable) set. To resolve this difficulty, we need to have some suitable connection on 𝑆.

3.2. Christoffel symbols and connections

Let 𝑆 = {𝑝𝜉}𝜉∈𝛩 be a statistical manifold. For 𝜉 ∈ 𝛩, let 𝑙𝜉 ∶= log 𝑝𝜉 . The functions 𝛤𝑖𝑗,𝑘 ∶ 𝛩 → R defined by
(

𝛤𝑖𝑗,𝑘
)

𝜉 ∶=
𝑛
∑

𝑙=1
𝑝𝜉 (𝑥𝑙)𝜕𝑘𝑙𝜉 (𝑥𝑙)

(

𝜕𝑖𝜕𝑗 𝑙𝜉 (𝑥𝑙) +
1
2
𝜕𝑖𝑙𝜉 (𝑥𝑙)𝜕𝑗 𝑙𝜉 (𝑥𝑙)

)

are called the Christoffel symbols of first kind of the statistical manifold 𝑆. Now, the connection ∇ on 𝑆 is defined as follows:

< ∇𝜕𝑖 , 𝜕𝑘 >∶= 𝛤𝑖𝑗,𝑘,
𝜕𝑗

3 
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where 𝑔 =< ⋅, ⋅ > is the Fisher metric of the statistical manifold 𝑆. Clearly, ∇ is a symmetric connection. Also,
(

𝜕𝑘𝑔𝑖𝑗
)

𝜉 = 𝜕𝑘

( 𝑛
∑

𝑙=1
𝑝𝜉 (𝑥𝑙)𝜕𝑖𝑙𝜉 (𝑥𝑙)𝜕𝑗 𝑙𝜉 (𝑥𝑙)

)

=
𝑛
∑

𝑙=1

(

𝜕𝑘𝑝𝜉 (𝑥𝑙)𝜕𝑖𝑙𝜉 (𝑥𝑙)𝜕𝑗 𝑙𝜉 (𝑥𝑙) + 𝑝𝜉 (𝑥𝑙)𝜕𝑘𝜕𝑖𝑙𝜉 (𝑥𝑙)𝜕𝑗 𝑙𝜉 (𝑥𝑙) + 𝑝𝜉 (𝑥𝑙)𝜕𝑖𝑙𝜉 (𝑥𝑙)𝜕𝑘𝜕𝑗 𝑙𝜉 (𝑥𝑙)
)

=
(

𝛤𝑘𝑖,𝑗
)

𝜉 +
(

𝛤𝑘𝑗,𝑖
)

𝜉 .

Briefly, 

𝜕𝑘𝑔𝑖𝑗 = 𝛤𝑘𝑖,𝑗 + 𝛤𝑘𝑗,𝑖. (3.5)

The Christoffel symbols of second kind 𝛤 𝑘𝑖𝑗 are also defined using the equality 𝛤𝑖𝑗,𝑘 =
∑𝑚
𝑙=1 𝛤

𝑙
𝑖𝑗𝑔𝑙𝑘. They may be calculated directly, 

using the following equation:

(𝛤 𝑘𝑖𝑗 )𝜉 =
1
2

𝑚
∑

𝑙=1
𝑔𝑘𝑙(𝜉)

(

𝜕𝑗𝑔𝑖𝑙(𝜉) + 𝜕𝑖𝑔𝑗𝑙(𝜉) − 𝜕𝑙𝑔𝑖𝑗 (𝜉)
)

,

where 𝐺(𝜉)−1 = [𝑔𝑖𝑗 (𝜉)]𝑚×𝑚 (𝜉 ∈ 𝛩).
In light of (3.5), we will have the following theorem [20]: 

Theorem 3.1.  The operator ∇ is a Levi-Civita connection with respect to the Fisher metric 𝑔 =< ⋅, ⋅ >.

By the previous discussions, to determine the distance between two points 𝜉 and 𝜂 on 𝑆, one should solve the following geodesic 
initial valued problem: 

{

𝛾̈𝑘(𝑡) +
∑𝑚
𝑖,𝑗=1 𝛤

𝑘
𝑖𝑗 (𝛾(𝑡))𝛾̇

𝑖(𝑡)𝛾̇𝑗 (𝑡) = 0 (1 ≤ 𝑘 ≤ 𝑚)
𝛾(0) = 𝜉, 𝛾(1) = 𝜂

(3.6)

The solutions of initial valued problem (3.6) are geodesics passing through 𝜉 and 𝜂. So, the distance between these two points is 
the minimum length of geodesics passing through them.

4. Statistical manifold of an 𝒏-state system

We first present the motivations and basic ideas behind our approach in the current paper.

4.1. Motivations and basic ideas

Differential geometry serves as a fundamental tool in modern science, particularly in mathematical physics and its applica-
tions across physics, chemistry, and engineering. In thermodynamics, notable contributions by Gibbs [26], Carathéodory [27], 
Hermann [28], and Mrugala [29,30] have established a differential geometric framework based on the contact structure of 
thermodynamic phase space. This space is characterized as a (2𝑛 + 1)-dimensional manifold comprising 𝑛 extensive variables, 𝑛
intensive variables, and one thermodynamic potential.

In an alternative geometric approach to thermodynamic systems, Weinhold [31] introduced an ad hoc metric on the space of 
equilibrium states, defined through the Hessian matrix of the internal thermodynamic energy.

In developing the concept of thermodynamic length, Ruppeiner [32] introduced a metric defined as the Hessian of the entropy. 
This metric is conformally equivalent to Weinhold’s metric, with the inverse temperature serving as the conformal factor. The 
Ruppeiner metric has found significant applications in black hole thermodynamics [33–36].

In this work, we employ an alternative approach within classical statistical mechanics to examine the geometry of thermodynamic 
systems. Our formulation begins with the probability density distribution incorporating the system’s partition function. This 
framework naturally incorporates the Fisher information metric [37–39], which arises from information-theoretic considerations. 
While conceptually distinct from previous geometric formulations, we note that both the Weinhold and Ruppeiner metrics can be 
related to the Fisher metric through Legendre transformations of the relevant thermodynamic variables [40].

The central objective of this paper is to establish a Riemannian manifold (𝑆, 𝑔) for 𝑛-state systems, where: 1. Each point in 𝑆
represents an 𝑛-state system in thermal equilibrium at temperature 𝑇 , characterized by its corresponding probability distribution 𝑝𝑇
2. The metric 𝑔 is precisely the Fisher information metric. This geometric framework naturally induces a distance measure between 
distinct 𝑛-state systems with different equilibrium temperatures. Building upon this structure, we derive an uncertainty inequality 
that provides a fundamental lower bound for temperature estimation error. Furthermore, we demonstrate a consistent relationship 
between the Fisher metric 𝑔 (of information-theoretic origin) and the heat capacity 𝐶𝑉 , revealing a connection between information 
geometry and thermodynamic quantities. 
4 
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Fig. 2. The graphs of 𝑔 and 𝐶𝑉  as functions of 𝑇  for 𝑛 = 2, 3,… , 8.

4.2. Riemannian metric of 𝑛-states

In this subsection, we return to 𝑛-state systems and will apply the mathematical framework mentioned in Section 3, for 𝑛-state 
systems. Consider an 𝑛-state system with energy levels 𝛺 = {𝜖1, 𝜖2,… , 𝜖𝑛}. Given any temperature 𝑇 > 0, the probability of finding 
the system in a microstate 𝑘 with energy 𝜖𝑘 in thermal equilibrium with the environment is given by 

𝑝𝑇 (𝜖𝑘) =
1
𝑍
𝑒−𝜖𝑘∕𝑘𝐵𝑇 , (4.1)

where 𝑘𝐵 is the Boltzmann constant and 

𝑍 =
∑

𝑘
𝑒−𝜖𝑘∕𝑘𝐵𝑇 (4.2)

is the partition function. So, we have a family of probability distributions 𝑆 = {𝑝𝑇 }𝑇>0 on 𝛺 = {𝜖1, 𝜖2,… , 𝜖𝑛}, parameterized by 
temperature 𝑇 . The mapping 𝑇 ⟼ 𝑝𝑇  is a smooth injection. The mapping 𝜙 ∶ 𝑆 → R defined by 𝜙(𝑝𝑇 ) ∶= 𝑇  gives a coordinate 
system 𝜙 = [𝑇 ] on 𝑆 which makes it a one dimensional smooth manifold with one single local chart.

Now, we may define a Riemannian metric 𝑔 on 𝑆 = {𝑝𝑇 }𝑇>0 as follows: 

𝑔(𝑇 ) ∶=
𝑛
∑

𝑖=1
𝑝𝑇 (𝜖𝑖)

𝜕
𝜕𝑇

(

𝑙𝑇 (𝜖𝑖)
)2 =

𝑛
∑

𝑖=1

1
𝑝𝑇 (𝜖𝑖)

(

𝜕𝑝𝑇 (𝜖𝑖)
𝜕𝑇

)2
, (4.3)

where 𝑙𝑇 (𝜖𝑖) = log 𝑝𝑇 (𝜖𝑖).
An easy calculation shows that

𝜕
𝜕𝑇

log 𝑝𝑇 (𝜖𝑖) =
𝜖𝑖

𝑘𝐵𝑇 2
− 1
𝑍
𝜕𝑍
𝜕𝑇

=
𝜖𝑖

𝑘𝐵𝑇 2
− 1
𝑘𝐵𝑇 2

1
𝑍

𝑛
∑

𝑗=1
𝜖𝑗𝑒

−𝜖𝑗∕𝑘𝐵𝑇

= 1
𝑘𝐵𝑇 2

(𝜖𝑖 − ⟨𝜖⟩𝑇 ),

where ⟨𝜖⟩𝑇 =
∑𝑛
𝑗=1 𝜖𝑗𝑝𝑇 (𝜖𝑗 ) denotes the mean value of energy at temperature 𝑇 . So,

𝑔(𝑇 ) = 1
𝑘2𝐵𝑇

4

𝑛
∑

𝑖=1
(𝜖𝑖 − ⟨𝜖⟩)2𝑝𝑇 (𝜖𝑖) =

1
𝑘2𝐵𝑇

4
𝜎2𝑇 ,

where 𝜎2 =
∑𝑛 (𝜖 − ⟨𝜖⟩ )2𝑝 (𝜖 ) denotes the variance of energy at temperature 𝑇 .
𝑇 𝑗=1 𝑗 𝑇 𝑇 𝑖

5 
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Fig. 3. The graph of 𝛤 (𝑇 ) for 𝑛 = 2, 3,… , 8.

Generally, the variance can be written in terms of the special heat capacity in constant volume 𝐶𝑉  as 𝜎2𝑇 = 𝑘𝐵𝑇 2𝐶𝑉  [20]. 
Therefore, the metric 𝑔(𝑇 ) may be written in terms of the special heat capacity by 

𝑔(𝑇 ) =
𝐶𝑉
𝑘𝐵𝑇 2

. (4.4)

As one may see in (4.4), the Riemannian metric 𝑔(𝑇 ) given in (4.3) is nearly related to the heat special capacity in constant volume 
𝐶𝑉 . In Fig.  2, one can compare the graphs of 𝑔 and 𝐶𝑉  as functions of 𝑇  at different states  [25].

Remark 4.1.  In general, it is possible to define an infinite number of distinct Riemannian metrics on a manifold. This is of course 
also true for the manifolds which are formed by statistical models, as our model 𝑆 = {𝑝𝑇 }𝑇>0. So the Fisher metric (4.3) is simply 
an instance among all possible metrics. This naturally arises the question, whether there is anything which distinguishes the Fisher 
metric from the others. The answer is indeed affirmative. The fact that a statistical manifold, like 𝑆, has the property that ‘‘each 
point in 𝑆 is a probability distribution’’ results in some natural structural conditions which are uniquely met by the Fisher metric.

Chenstov’s theorem states that, the Fisher metric is the unique Riemannian metric, up to rescaling, on a statistical manifold that 
is invariant under sufficient statistics. See [22,41,42] for comprehensive discussions on uniqueness of Fisher metric.

4.3. Cristoffel symbol and geodesies of 𝑛-states

The Cristoffel symbol of the Riemannian statistical manifold (𝑆, 𝑔), corresponding to an 𝑛-state system, is given by

𝛤 (𝑇 ) = 1
2𝑔

𝜕
𝜕𝑇

𝑔(𝑇 ) = 1
2𝑔

𝜕
𝜕𝑇

(

𝐶𝑉
𝑘𝐵𝑇 2

)

= 1
𝑇

(

1
2

1
𝐶𝑉

𝜕𝐶𝑉
𝜕𝑇

− 1
)

= 1
2
𝜕
𝜕𝑇

log𝐶𝑉 − 1
𝑇

where

𝐶𝑉 = 𝜕𝐸
𝜕𝑇

= 𝑘𝐵

(

𝛥
𝑘𝐵𝑇

)2 [

− 𝑛2𝑒−𝑛𝛥∕𝑘𝐵𝑇

(1 − 𝑒−𝑛𝛥∕𝑘𝐵𝑇 )2
+ 𝑒−𝛥∕𝑘𝐵𝑇

(1 − 𝑒−𝛥∕𝑘𝐵𝑇 )2

]

.

In Fig.  3, one can see that, the Christoffel symbole shows the same treatment at larger states.
In light of (3.6), the geodesics corresponding to an 𝑛-state system may be attained by the solutions of the following geodesic 

differential equation: 

𝛾̈(𝑡) + 𝛤 (𝛾(𝑡)) 𝛾̇(𝑡) 2 = 0. (4.5)
( )
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Fig. 4. The graphs of geodesics passing through 𝑇1 and 𝑇2 for 𝑛 = 2, 5, 8.

Note that, given two 𝑛-state systems with temperatures 𝑇1 and 𝑇2, the distance between these 𝑛-state systems are given by 

𝑑(𝑇1, 𝑇2) = ∫

1

0

√

𝑔(𝛾(𝑡))|𝛾̇(𝑡)|𝑑𝑡, (4.6)

where 𝛾 = 𝛾(𝑡) is the solution of the following boundary valued problem: 
{

𝛾̈(𝑡) + 𝛤 (𝛾(𝑡))(𝛾̇(𝑡))2 = 0
𝛾(0) = 𝑇1, 𝛾(1) = 𝑇2

(4.7)

Fig.  4 represents the geodesics for 𝑛-state systems passing through the temperatures 𝑇1 = 0.1 and 𝑇2 = 0.2, 0.3,… , 1 for 𝑛 = 2, 5, 8.
We have numerically used module integrate.solve_bvp of SciPy package to solve geodesic differential equation

(4.7) [43]. It uses more effective Runge–Kutta method (RK45) and continuous extensions [44].
Also, Fig.  5 provides the distance between 𝑛-state systems with different values of 𝑇1 and 𝑇2. A spacial graph for distance is also 

shown in Fig.  6. 

Remark 4.2.  A geodesic connecting a system at temperature 𝑇1 to a system at temperature 𝑇2 with respect to the metric 𝑔 represents 
the optimal temperature variation path when the system transitions from 𝑇1 to 𝑇2. This suggests that one could design an effective 
thermometer for the statistical manifold 𝑆 = {𝑝𝑇 }𝑇>0 based on this geometric structure.

5. An uncertainty inequality

Suppose that 𝑆 = {𝑝𝑇 }𝑇>0 is the one-dimensional statistical manifold corresponding to an 𝑛-state system. Suppose that a data is 
randomly generated subject to probability distribution 𝑝𝑇  in 𝑆. Consider the problem of estimating the unknown temperature 𝑇  by 
a function 𝑇̂ ∶ 𝛺 → R which is called an estimator. 𝑇̂  is called an unbiased estimator if

𝐸𝑇 (𝑇̂ ) = 𝑇 ∀𝑇 > 0,

where

𝐸𝑇 (𝑇̂ ) =
𝑛
∑

𝑗=1
𝑇̂ (𝜖𝑗 )𝑝𝑇 (𝜖𝑗 ).

For a temperature 𝑇 > 0, the mean square error of an unbiased estimator 𝑇̂  is defined by
𝑣(𝑇 ) ∶= 𝐸𝑇

[

(𝑇̂ − 𝑇 )2
]

.

A better estimation of a temperature 𝑇  occurs if 𝑣(𝑇 ) is as small as possible. The well-known Cramer–Rao inequality states that the 
mean square error cannot be as small as we like. Equivalently, there is a lower bound for it which is related to the Fisher metric. 
7 
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Fig. 5. Table distances for various values of temperatures for 𝑛 = 5.

Fig. 6. The Spacial graph of distances for 𝑛 = 2, 5, 8.

Theorem 5.1 (Cramer–Rao Inequality [20]). Let 𝜉 be an unbiased estimator and 𝑉 (𝜉) =
(

𝑣𝑖𝑗 (𝜉)
)

𝑛×𝑛 be the mean square error matrix. Then 
𝑉 (𝜉) ≥ 𝐺(𝜉)−1 in the sense that 𝑉 (𝜉) − 𝐺(𝜉)−1 is a positive semi-definite matrix.

Now, we apply the Cramer–Rao inequality for the one-dimensional manifold of an 𝑛-state system. Clearly, in this case, the mean 
square error matrix has only one array 𝑣(𝑇 ) = 𝑣11(𝑇 ), and is given by

𝑣(𝑇 ) = 𝐸𝑇
[

(𝑇̂ − 𝑇 )2
]

and the Cramer–Rao inequality will be as follows:

𝑣(𝑇 ) ≥ 𝑔(𝑇 )−1 =
𝑘𝐵𝑇 2

𝐶𝑉
.

Note that, as shown in Fig.  7, 𝑔(𝑇 )−1 = 𝑘𝐵𝑇 2

𝐶𝑉
 has a minimum which gives a lower bound for estimation error of the temperature 

of system. Fig.  7 shows the minimum error 𝑒min = min 𝑔(𝑇 )−1 of temperature estimation of an 𝑛-state system with an accuracy of 
10−8 for 𝑛 = 1, 2,… , 8. It can be seen that, as 𝑛 increases, the minimum estimation error of the temperature of an 𝑛-state system 
approaches a common lower bound (see Fig.  3).

In physics, measurements inherently involve some degree of error. We propose that the universal lower bound presented in this 
manuscript reflects a fundamental uncertainty in temperature measurement. This is supported by numerical evidence demonstrating 
8 
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Fig. 7. The graph of 𝑔−1 and its minimum as the lower bound of error estimation of temperature for 𝑛 = 2, 3,… , 8.

the independence of this lower bound from 𝑛 (see Fig.  7 and its accompanying table). Importantly, this common lower bound 
establishes the minimum achievable scale for system temperature measurement.

6. Summary and discussion

In this paper, a mathematical modeling of an 𝑛-state system with equal energy intervals is presented, by using information 
geometry techniques. In this regard, we have assigned a Riemannian manifold to an 𝑛-state system which made us capable to define 
a metric on the family of distributions of an 𝑛-state system, parameterized by temperature. Numerical methods are also applied 
to calculate the distance between different equilibrium statistical states of an 𝑛-state system. Finally, using Cramer–Rao inequality, 
we gave a lower bound for the mean square error of any unbiased estimator of the temperature. The procedure described for 𝑛-
state systems can be generalized to any system characterized by a family of parameterized probability distributions. In equilibrium 
statistical mechanics, this approach is applicable to both canonical and grand canonical ensembles.
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